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Abstract—The Internet of Things refers to uniquely 
distinguishable devices communicating with each other. 
Communication is largely on resource-constraint devices 
which would generate large volumes of data, the security, 
authenticity, and integrity of devices being essential. 
SPONGENT-88 variant of the SPONGENT family is a 
lightweight Hash algorithm suitable for authenticating 
resource-constrained devices in an IoT environment or 
WSN (Wireless Sensor Network) as it has the smallest 
footprint in comparison with the sponge-based Hash 
algorithm. Conventionally most of the security primitives 
are realized using more sequential logic which leads to an 
increase in the area occupied and latency. This work 
proposes a serialized architecture with a balance in 
sequential and combinational logic that uses lesser flipflops 
with a 21% increased performance for throughput/slice in 
comparison with reported works on target LUT-6 
technology on FPGA, realized on the 14.2 ISE design suite. 
The work has a 4.6% decrease in quiescent power and 
dynamic power reported on the 14.2 ISE design suite for 
LUT-6 technology. This work has also achieved a Gate-
Equivalence (GE) utilization for the proposed design on 
TSMC180 technology for a data path of 88-bit, while the 
proposed work reports 1204GE. In this work, a scaled-up 
architecture of the proposed SPONGENT-88 is realized for 
SPONGENT-128 and SPONGENT-224 as these variants 
provide improved security bound and is in comparison with 
the security provided by SHA-1 and SHA-2 algorithms. The 
scaled architecture for the latter variants of SPONGENT 
algorithms has achieved reduced Gate-Equivalence (GE) in 

comparison with the reported work.  

Index Terms—Hash algorithm, lightweight authentication, 
sponge-based authentication 

I. INTRODUCTION 

Lightweight Cryptography (LWC) is seen to be 

spanning into existence as the last two decades saw the 

proliferation of a variety of interconnected devices in an 

environment known as the IoT(Internet-of-Things)/ 

WSN(Wireless Sensor Networks). With these devices 

humongous amount of data is been generated. However, 

due to a lack of effective security and privacy protocols, 

most IoT devices are prone to hacking. Therefore 

addressing the security and privacy needs of these 

connected low-cost pervasive devices with limited 

computations is of prime importance. The conventional 

cryptographic primitives that were designed were 
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computationally complex and hence were not applicable 

to the security and privacy needs in the IoT/WSN 

paradigm.  

Lightweight cryptography is not bound to replace 

conventional cryptography while they are efficient but 

was designed to address the specific use cases at the cost 

of having a narrower range of applicability. The goal of 

lightweight cryptography is to enable a wide range of 

connected devices with different applications such as 

health monitoring systems, automated management of 

supply chains, public transportation, telephone cards, etc.  

The connected edge devices in IoT/WSN are possible 

to identify because of different tagging technologies, 

making all the end nodes/physical objects connect to 

communicate and share information. The communication 

between the end devices must be secured in IoT/WSN 

with confidentiality, integrity, and authentication services. 

Several new factors are constrained for operating under 

these environments like limited computational power, 

RAM size, and ROM size with lesser footprint. But these 

constrained IoT devices/end nodes use traditional security 

measures [1], which computationally require more power 

and memory. Hence IoT-enabled devices were the 

medium for the emergence of a new field, lightweight 

cryptography(LWC). With this, a few software and 

hardware implementations of lightweight ciphers are 

designed for IoT applications. These are broadly 

classified as hash functions, stream ciphers, and block 

ciphers. Software implementations have lower costs and 

provide more flexibility in manufacturing and 

maintenance. However, the literature proposes two core 

categories of lightweight cryptography depending on 

different types of applications with hardware (HW) and 

software (SW) attributes.  

• Ultra LWC: For a specific application and security 

requirement in a highly resource-constrained 

environment (e.g. specific microcontroller, for only 

one of the security measures Hash/encryption/ 

authentications) occupying a footprint lesser than 

1000GE for security primitives. 

• Ubiquitous LWC: IoT end nodes (e.g. FPGA, 

general-purpose microcontroller, one/more security 

primitives) occupying a footprint of less than 

3000GE for security primitives at the end nodes [2]. 

The Ultra LWC finds applications in domains like IIoT 

(Industrial IoT) where the security and privacy of the 

connected end nodes need to find be very specific and 
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highly resource constrained. Ubiquitous LWC is directed 

towards IoT/WSN end nodes, that have varying end 

application that requires different security measures. 

Most of the research is primarily based on ubiquitous 

lightweight cryptography. Although ultra-lightweight 

cryptography is implementable with existing regular 

resources. There is always a need to provide a tailor-

made/optimized solution for these lightweight 

cryptographic primitives to have a lower footprint and 

improved performance. 

Lightweight cryptography has two forms, likewise to 

conventional cryptography, known as symmetric and 

asymmetric. A secure hash algorithm is one part of 

cryptography protocols that require quick processing and 

authentic data transmission. A lightweight cryptography 

Hash function is required in IoT applications that involve 

intensive and sensitive data transactions, as these devices 

have to primarily authenticate themselves to 

communicate. This work focuses on lightweight Hash 

primitives for IoT/WSN based applications. 
One of the areas where lightweight cryptography finds 

its applicability is IoT-based healthcare is an area where 
lightweight cryptographic primitives can be harnessed. 
Here a large amount of private data is being collected, 
and the security of the healthcare services provided can 
impact the well-being of the patient's life [3]. These 
devices need different cryptographic primitives such as 
encryption, authentication, and authenticated encryption 
to be implemented and it is challenging, because of 
resource constraints as it also connects the edge/fog 
computing layers to medical databases and cloud 
computing servers. 

Blockchain is another emerging technology that is 
being deployed in the IoT architecture which has yielded 
numerous issues, challenges, and advantages [4]. 
Authentication of the connected nodes is essential in 
integrating blockchain in IoT. Sponged-based Hash 
primitives are found to be more suitable in terms of 
performance and energy consumption for blockchain 
based applications which also facilitates building a robust 
IoT architecture [5].  

The paper is organized as follows, the Introduction 
section followed by related works of the lightweight Hash 
algorithm in Section II, in Section III background of the 
sponge-based Hash construction, the proposed 
architecture for the SPONGENT-88 algorithm in Section 
IV, and results and discussion in Section V.  

II. RELATED WORKS 

Many advancements in the field of lightweight 
cryptography have been observed with the end goal being 
to tailor-make the conventional cryptographic algorithm 
for resource-constrained platforms/end nodes. 
Lightweight algorithms must be designed to have a lower 
footprint with improved performance. Although many 
lightweight cryptographic algorithms have been 
published the security analysis is performed at the 
algorithmic level and still finds a need to keep in 
consideration the physical attacks on these primitives [6]. 

S. Aruna et al. [7] have outlined the hardware and 
software implementation challenges of lightweight 

cryptographic primitives. They provide the classification 
of Hash function construction mode with lightweight 
Hash function for real-time applications. 

The lightweight authentication algorithms can be 
classified under three constructions a) Davies–Meyer, b) 
Merkle-Damgard, and c) Sponge. The lightweight Hash 
algorithms under these different constructions for 
resource-constrained environments which occupy areas 
less than 3000GE are keccak-f[200] [8], ARMADILLO 
[9], GLUON [10], PHOTON [11], QUARK [12], LHash 
[13], and SPONGENT [14].  

The authors of the work [15] report a comparative 

analysis of the sponge-based Hash algorithms for IoT 

applications. They present a comparison of the algorithms: 

keccak-f[200] [8], GLUON [10], PHOTON [11], 

QUARK [12], LHash [13], and SPONGENT [14] in 

terms of throughput, power, and area where 

SPONGENT-88 [14] is having lowest power 

consumption with 1.57 μW among the Hash algorithms 

with an area of 738GE. 

SPONGENT [14] is also the underlying primitive used 

in the NIST LWC finalist algorithm Elephant [16]. It’s a 

block cipher based on permutation and uses encrypt-then-

MAC procedure for authentication. 

The details of the various author's contributions to the 

Hash algorithms keccak-f[200] [8], ARMADILLO [9], 

GLUON [10], PHOTON [11], QUARK [12], LHash [13], 

and SPONGENT [14] which are under 3000GE are 

discussed below in this section. 

Stephane Badel et al. [9] propose a general-purpose 

cryptographic function design for RFID (Radio 

Frequency Identification) and sensor networks with 

different design construction for applications like 

challenge-response protocols, hashing, and digital 

signatures, built on Merkle Damgard construction. A 

serialized design of ARMADILLO occupies 2923GE on 

180nm technology node and has better performance in 

throughput and throughput per GE with frequency 

constrained at 100kHz in hashing design construction in 

comparison with SHA-1, and SHA-256. 

Keccak-f[200] and Keccak-f[400] by Bertoni et al. [8] 

are winners of NIST SHA-3 Hash function competition. 

Keccak-f[200] produces a 64-bit Hash digest with an 

internal state permutation of 200-bit, the permutation 

function is based on sponge construction and finds itself a 

suitable Hash algorithm for a resource-constrained 

environment. Keccak-f is been designed for different 

permutation sizes and variable-length output digest 

respectively while keeping the permutation function the 

same. A serialized implementation of Keccak-f[200] is 

realized on 130nm technology using 2520GE for a 

frequency constrained at 100kHz. 

PHOTON [11] (Sponge-based construction) was 

designed with sponge-based construction with AES-like 

primitive as an internal unkeyed permutation. It has been 

obtained as the most compact Hash function with 

1120GE with 64-bit security bounds on pre-image and 

collision attacks with a new method for column mixing 

layer in a serial way, which led to lowering the area 

requirement as compared to the original AES algorithm. 
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PHOTON has been proposed with variants ranging from 

Hash digest size of 80-bit to 256-bit with pre-image 

security bounds ranging from 64-bit to 224-bit 

respectively. The smallest variant of PHOTON occupies 

865GE and the largest occupies 4362GE. 

Berger et al. [10] proposed a sponge-based Hash 

algorithm GLUON after the publishing of the PHOTON 

and SPONGENT algorithms. It is derived from two 

stream ciphers F-FCSR-v3 and X-FCSR-v2. GLUON is 

designed for three different message digests with varying 

security levels. The lightest instance is GLUON-128/8 

with 64-bit security level that fits in 2071GE and the 

heaviest variant GLUON-224/32 performs well on the 

software platform. This is based on Feedback with Carry 

Shift Register (FCSR) while the design is heavier than the 

basic building blocks of Quark and PHOTON, the well-

proven design of FCSRs has been highlighted as the 

strength of the GLUON algorithm. It is regarded as better 

in area than Quark variants. In terms of throughput, it’s 

similar to the 64-bit of the Quark variant only. When 

compared to PHOTON the area achieved by GLUON is 

not comparable at all but performs better in throughput. 

Authors of QUARK (Sponge-construction) Aumasson 

et al. [12] designed three variants U-QUARK, D-

QUARK, and S-QUARK. Among the variants where the 

lightest version is U-Quark fits with 1379GE with a 

minimum of 64-bit security against attacks. S-Quark has 

higher security bound with 112 bits realized with 2296GE 

on 180nm technology node. When compared with the 

lightweight sponged designs SPONGENT and PHOTON 

which appeared after the publication of Quark, Quark has 

a better security margin compared to PHOTON and better 

throughput than SPONGENT but has a higher footprint 

than both PHOTON and SPONGENT. 

LHash by Wenling et al. [13] is a lightweight Hash 

algorithm LHash that employs a Generalized Feistel 

structure (GFS) in the internal permutation as this 

structure provides good diffusion speed in the 

permutation layers. This Hash function supports three 

different digest sizes: 80-bit, 96-bit, and 128-bit, 

providing preimage security from 64-bit to 120-bit, and 

second preimage and collision security from 40-bit to 60-

bit. LHash requires about 817 GE and 1028 GE with a 

serialized implementation. In faster implementations 

based on function T, LHash requires 989 GE and 1200 

GE with 54  and 72 latency cycles per block, respectively. 

LHash is known to have the lowest energy consumption 

among the existing lightweight Hash algorithms with 

moderate security levels. 

Lesamnta-LW [17] is a 256-bit Hash function designed 

for low-end devices with an 8-bit processor. The basic 

building block under Lesamnta is AES with 256-bit 

plaintext and a 128-bit key. Lesamnta-LW is the 

lightweight version of Lesamnta. Lesamnta -LW uses a 

smaller key size than the block size for the underlying 

algorithm, whereas the LW1 version does not have a 

feedforward of inputs hence leading to a reduction in 

memory. It provides 120-bit security bounds against 

collision and preimage attacks. It has been realized on  

90nm technology node occupying 8.24K gates. 

Lesamnta-LW was been designed for applications on 

low-cost devices that require higher security bounds. 

Even though the gate-equivalence of Lesamnta is more 

than 3000GE, it’s an LWC NIST [18] recommendation 

under lightweight Hash functions, which can be deployed 

in the software platform. 

Hash functions can also be realized using block cipher 

as the underlying primitives. This is being realized in  

Davies-Meyer construction where a block cipher is used 

to construct a hash primitive. Bogdanov et al. [19]  

constructs a Hash function from a block cipher 

PRESENT with 64-bit and 128-bit Hash outputs. The 

design is been proposed with two combinations under 64-

bit Hash digest as DM-PRESENT-80 and DM-

PRESENT-120 using the Merkle-Damgard construction 

with the key size of 80-bit and 120-bit respectively. They 

propose H-PRESENT-128 under 128-bit Hash digest 

with a key size of also 128-bit. The serialized and parallel 

architecture of DM-PRESENT and H-PRESENT achieve 

a footprint of 1600GE to 4256GE under various variants 

of the above-mentioned Hash algorithms. 

SPONGENT [14] was proposed in 5 designs (groups) 

with 13 variants to meet different collision and secondary 

preimage resistance for meeting various implementation 

constraints. It’s known to be occupying the lesser area 

among lightweight sponge-based algorithm Quark and is 

comparable with the area of PHOTON. The group of all 

Spongent variants for the respective design group 

produces the same n-bit Hash digest. The SPONGENT-

88 variant functions are designed with low preimage 

security requirements for highly restricted resource 

environments. They can be ideally used in RFID 

protocols and for PRNGs. For highly constrained 

applications with low and middle requirements for 

collision security SPONGENT-128 and SPONGENT-160 

can be the best fit. The design rationale of the 

SPONGENT-128 and SPONGENT-160 functions also 

provides compatibility with the SHA-1 [8] interfaces. The 

parameters of SPONGENT-224 and SPONGENT-256 are 

relatable to those of a subset of SHA-2 [8] and SHA-3 [8], 

hence making Spongent functions compatible with most 

lightweight embedded applications. The Hash function in 

general has received very less attention from 

cryptanalysis.  

SPONGENT S-box was classified as one of the 

potentially good S-box by Zhang et al. [20], as the S-box 

is the only nonlinear component in the cryptographic 

primitive and plays an important role against differential 

cryptanalysis. According to the state-of-art differential, 

cryptanalysis is more important for Hash function than 

linear cryptanalysis. Therefore, SPONGENT lightweight 

Hash algorithm has the merits of addressing the resource-

constrained requirements of end nodes/WSN for different 

applications. This work focuses to achieve improved 

throughput and lower footprint in comparison with the 

state-of-art work of the SPONGENT-88 algorithm. The 

work proposes a serialized architecture for the 

SPONGENT-88 variant of the SPONGENT family for 

having improved throughput and footprint under 

ultralightweight cryptography. The same architecture is 
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being scaled for different SPONGENT designs and it 

achieves an improved footprint in comparison with the 

original work [14]. 

III. BACKGROUND 

It's more difficult to implement a Hash function than a 

block cipher because the internal state size of the Hash 

function is much larger and requires a greater number of 

flip-flops/registers for realizing the same. For example, 

the SHA-3[8] uses a 1600-bit internal state whereas any 

lightweight block cipher would use a 64-bit block size. 

But when it comes to the security provided by Hash-

based algorithms in terms of pre-image, secondary pre-

image, and collision attacks are much more reliable than 

compared the lightweight block cipher. 

The security measures for Hash algorithm are as 

follows: 

• Preimage resistant: If H is a Hash function and x is 

the block of data to the function, it should be 

preimage resistant or one-wayness provided an 

output value H(x) Hash value, it should be difficult to 

compute x to from H(x). To find an input message 

that would map to this output. With n input-output 

size of the Hash function, the complexity of the 

attack is 2n. 

• Secondary preimage resistance: Also known as weak 

collision resistance: for a known Hash value H(x) of 

a corresponding message x, it should be difficult to 

find another message H(x') with the same Hash value 

i.e., H(x) ≠ H(x'). Once again the complexity of the 

secondary preimage attack is 2n. 

• Collision resistant: It should be infeasible to find two 

messages which would lead to the same digest. This 

phenomenon is best illustrated with the birthday 

paradox problem which refers to given a set of m 

persons at least two of them will have their birthday 

on the same day, thus finding the complexity of such 

a collision is approximated to 2n/2. 

With the growing number of connected systems, the 

secure communications of these systems become of 

paramount importance. As these devices are evolving in 

numbers, and hence they have a low time to market for 

having improved performance at the entry-level. Hence, 

to make these devices reliable and robust to work in 

different environments for several applications, it 

becomes necessary to provide security solutions for them 

[21]. A medium security level or tailor-made security is 

often sufficient in this area with better performance. 

Hence, lightweight cryptography finds its applicability 

here, because the algorithms are designed to have a lesser 

footprint with reduced security properties. A tradeoff 

between area and speed is achieved in the lieu of reduced 

security for devices under strict resource constraints such 

as RFID tags [22]. Lightweight Hash functions typically 

are used as lightweight signature schemes, RFID security 

protocols, or random number generators for 

authentication. 

A. Sponge-Based Construction 

A commonly used theoretical model for generating a 
message digest in cryptography is the well-known 
random oracle model. The random oracle function inputs 
a variable-length input message and produces a message 
digest of arbitrary length. Ideally, a sponge function uses 
a variable round-based random permutation which works 
on the same principle of random oracle. As shown in Fig. 
1, which gives the basic sponge construction, a sponge 
function consists of three basic components: The 
initialization phase, absorption phase, and squeeze phase. 
The initialization phase comprises a padding function to 
resist length extension attacks. The absorption and 
squeeze phases use the permute function of variable 
rounds. First, in the initialization phase, the input 
message m is padded, which results in the padded 
message m of length |l|. Then the m is divided into |l|/r 
blocks of mi, each of r bits. The permute function πb has 
an internal STATE b, these mi blocks are added to the 
internal state, followed by the computation of the permute 
function. After all, blocks are absorbed, one or more 
blocks with rate r are derived from STATE in the 
squeezing phase as h1, h2, h3, etc. respectively. The most 
interesting feature of lightweight Hash functions is its 
adaptable rate r, which is independent of the security 
level, even if the state size b, b>= r + C, where C is the 
capacity, increases (or decreases) accordingly. This 
parameter can be used as a design criterion for having a 
reduced data path of the algorithm. It also controls the 
number of bits that get absorbed per computation of the 
underlying permute function. Hence, it is possible to 
construct a hash function that consumes less memory 
compared to other well-known domain extenders such as 
the wide-pipe Merkle-Damgard construction, which 
usually requires twice the state size for the desired 
security level. Among the lightweight sponge-based hash 
functions, Quark [12] was designed with minimized state 
size, using the wide-pipe Merkle-Damgard construction. 
This usually requires twice the state size for the desired 
security level. Due to many inputs for the Boolean 
function in the round transform, it cannot be promised to 
achieve the smallest logic size. But the Spongent [14] 
results in achieving a significantly more compact design 
by keeping the round function very simple and hence 
reducing the logic size close to the smallest theoretically. 

 
Fig. 1. Sponge-based construction. 
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The proposed architecture focuses on reducing the 
SPONGENT-88 variant which is suitable for resource 
constraint devices to have better throughput and area 
occupied on both FPGA and ASIC implementation. We 
have explored the fair balance in the sequential and 
combinational logic with horizontal data path folding to 
realize the architecture. As on FPGA, the number of 
slices occupied on it depends on the distribution of both 
sequential and combinational logic, combinational logic 
synthesizes as Look-up-table(LUT) and sequential logic 
synthesizes as Flipflops(FF). The proposed design uses 
only one STATE register, and the rest of the logic 

required to update the register is realized using 
combinational logic with respective internal modules. 

IV.  PROPOSED ARCHITECTURE FOR SPONGENT-88 

SPONGENT algorithm has five parameters (n, b, c, r, 
R) to instantiate a specific Hash function. These 
parameters vary for different variants of the algorithm. 
The parameters for SPONGENT-88 are n = 88, b = 88, c 
= 80, r = 8, and R = 45 where n is the output, b is the 
internal state size or width, r is the rate and c is the 
capacity and R is the number of permutation rounds.  

 
Fig. 2. The proposed architecture for SPONGENT-88/80/8 lightweight sponged-based Hash algorithm 

 

The architecture developed for SPONGENT-88 is a 

serialized iterative architecture using a single module for 

the permute block which is used for the transformation of 

the b bits π88. Initially, all the bits of the STATE are zeros, 

where the state is a register. In the first round, the input 

message block of r bits is XOR-ed with the value in the 

state register in the permute function. In each round, the 

STATE register is then XOR-ed with the contents of an 

LFSR, reversed bits of LFSR, and then processed by the 

substitution and permutation layers as seen in Fig. 2. The 

proposed architecture makes use of a single-clocked state 

register and a single-clocked linear feedback shift register, 

the substitution byte, and the permutation modules are 

asynchronous, i.e. they change once any change in the 

input is triggered. Once the reset signal is asserted the 

state register is initialized to zero and Linear feedback 

shift register (LFSR) register is initialized to 6-bit binary 

value 000101. A counter module is implemented which is 

clocked for each active round of the SPONGENT-88 

algorithm, it is an up-down counter. This architecture 

cascades both the absorption and squeeze phases. After 

the reset signal goes low, enable signal is asserted to start 

the permute function, where the 8 bits of the message are 

concatenated with the zeros of the state register. As the 

enable signal goes low, the absorption signal is asserted 

and the contents of the state register are processed by 

XOR-ing the contents of the Linear feedback shift 

register with the most significant bits of the state register 

and reversed contents of the Linear feedback shift register 

with the least significant bits of the state register. The 

linear feedback shift register gets updated for every clock 

cycle. For each clock cycle the b [4] and b [5] bit of the 

shift register gets XOR-ed and the contents of the register 

shift by 1 position appending the XOR-ed bit at the MSB 

of the register. Then the state register is processed 

through the substitution byte module which consists of 22 

Sbox modules called parallelly to create confusion in the 

bits of the state register followed by 88-bit permutation 

module to provide diffusion of the state register bits. The 

Sbox module is implemented using lookup tables, i.e. 

using mux’s, and permutation is simple hard wiring of the 

state register bits. This whole process comprises a single 

round of permute function, which repeats for 45 rounds 

for the same message block of size 8 bits only. Each 

message block of 8 bits is subsequently XOR-ed with the 

state register. The absorb signal remains high until all the 

message bits in terms of r-bit rate are processed, where r 

= 8-bit. Then the absorb signal goes low and the squeeze 

signal is asserted and the state register now undergoes the 

permute function for 45 rounds for producing a Hash 

value of 8 bits. This process continues until the squeeze 

phase produces a Hash value of 88 bits. In the squeeze 

phase, when the counter rolls from the value 44 to 0, the 

8-bit Hash value is tapped from the permutation layer. 

Similarly the same repeats for 88 bits of the Hash value to 

be generated. 

The architecture for the proposed Spongent-88 with 

FSM is designed with the control signals absorb,  squeeze,  
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and enable with four states in the FSM. The states are 

CRTL_INIT, CRTL_ABSORB, CRTL_SQUEEZE, 

PERMUTE, and CRTL_DONE. It was not found 

necessary to have a state for padding the message bits, as 

the architecture pads only a byte of information. Hence 

this is taken care of in the CRTL_INIT state. The FSM is 

written to produce a Hash digest of 88-bit from a message 

block of 256-bit to have similar comparisons with the 

works reported in the literature. In the CRTL_ABSORB 

state, all the message bits inclusive of padding are 

absorbed in a block size of r bits, and each r bits undergo 

the PERMUTE state for 45 rounds, as it is being 

determined for the Spongent-88 variant by the original 

work [5]. As seen in Fig. 3 it gives the block level 

architecture Spongent-88 core with the controller. In the 

CRTL_SQUEEZE state, the absorbed message bits 

further go through the PERMUTE state for 45 rounds at 

the end of it yields an 8-bit Hash digest, which keeps 

updating the 88-bit Hash digest register in the controller 

module until the entire 88-bit Hash digest is formed. 
 

The state diagram for the FSM is as seen the Fig. 4, 
once the enable and absorb signal goes high the state 
moves from CRTL_INIT to CRTL_ABSORB the control 
signal absorb remains high as long the message bits 
inclusive of padding get absorbed until the value of the 

meassage_block reaches 33 (8-bits per block  33 equates 
to 264-bit, inclusive of the padding bits) as seen in the 
state diagram the control remains in the PERMUTE state 
depending on the value of the round counter. The control 
signal absorb is made ‘0’ and the squeeze signal is 
asserted, now the control of the finite state machine goes 
from CRTL_ABSORB to CRTL_SQUEEZE the control 
remains absorbed until the value of the Hash_length 

reaches 11 (8-bit Hash output from PREMUTE state  11 
equates to 88-bits Hash output) the control remains in 
PERMUTE state depending on the value of the round 
counter until all the 88-bit Hash digest is produced and 
updated in the CRTL_SQUEEZE state. Once the 88-bit 
Hash digest is obtained state moves from 
CRTL_SQUEEZE to CRTL_DONE and then again to the 
CRTL_INIT state. 

 
Fig. 3. Proposed architecture for Spongent-88 with Controller. 

 
Fig. 4. Finite State machine for proposed Spongent-88 design with Controller.  
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V. RESULTS AND DISCUSSIONS 

The proposed architecture for the SPONGENT-88 

sponge-based lightweight algorithm is realized on FPGA 

and ASIC platforms for a comparison of reported works 

on both domains. 

Section A discusses the implementation results 

obtained on the FPGA platform for LUT-4 and LUT-6 

technology target boards. The proposed architecture was 

also realized on the ASIC platform with TSMC180nm 

technology is discussed in Section B. 

A. FPGA Implementation 

The proposed architecture for Spongent-88 was 

implemented using a minimal number of internal state 

registers for better throughput efficiency with a trade-off 

on memory. The design was constructed using modules 

of Permute (πb), Sbox, and Player. An FSM was written 

with control signals for the transition of the different 

phases of the algorithm from initialization, absorption, 

and squeezing. The description of the target platform and 

metrics used for measuring the efficiency and 

implementation results are as follows.  

The proposed architecture was simulated and 

synthesized for Xilinx FPGA (LUT-4 and LUT-6 

Technology) using ISE Design Suite 14.2 and results 

were captured after the place and route phase. Spartan 

3(xc3s50-5cp132) board and Virtex4 (xc4vfx12-12sf363) 

was chosen for the implementation under LUT-4 

technology. The design was implemented for a frequency 

constrained to 100kHz. For LUT-6 technology Spartan6 

(xc6slx16-3csg324) and Artix A7-100T was chosen. A 

board-specific constraint file was generated for the 

targeted FPGA for each of the boards. The 

implementation of the proposed architecture on the Artix-

A7-100T board was realized using Vivado design suite 

2018.1. The implementation architecture of the proposed 

design focuses on metrics: area, throughput, and power. 

The results for the above metrics are tabulated in Table I 

to Table IV in terms of area: flip-flops, lookup table, and 

slice, performance: throughput (unconstrainted), 

throughput (constrained at 100 kHz), maximum 

frequency Fmax, and power: static and dynamic. The other 

two derived metrics for area and performance are 

throughput/slice (unconstrainted), throughput/slicea 

(constrained at 100 kHz), and energy consumption: total 

ENEa and ENEa/bit. Throughput is calculated as Thru = 

B_sizeFmax/LAT and energy consumed is calculated as 

ENE = Total_powerLAT/(constrained frequency), where 

Fmax is the maximum frequency reported, LAT is the 

latency cycles required to produce the output digest for an 

input size of B_size which is 256-bit and represents the 

input block size. The power and energy consumption of 

the proposed architecture for the LUT-4 and LUT-6 

technology are tabulated in Table II and Table IV. Power 

analysis is performed at 100kHz clock (reasonable for 

applications targeted by lightweight Hash) using the 

Xpower analyzer tool on ISE 14.2 design suite for the 

proposed architecture.  

TABLE I: RESOURCE UTILIZATION AND PERFORMANCE OF SPONGENT-88 ALGORITHM ON LUT- 4 FPGA BOARDS  

Work Design Platform 
Resource Utilization LAT 

(Cycles) 

Max. Freq. 

(MHz) 

Thru 

(Mbps) 

Thru/Slice 

(Mbps/Slice) 

Thrua 

(Kbps) 

Thru/Slicea 

(Kbps/Slice) FF LUT Slice 

Lara-Nino et al. 

[23] 
SPC-88 

SP3 

104 143 74 1980 227 29.32 0.39 12.93 0.17 

This Work SPC - 88 94 143 74 1980 291 35.55 0.48 12.93 0.12 

This Work SPCFSM - 88 216 301 210 1980+ 102 13.18 0.10 12.93 0.05 

This Work SPC - 88 
VT4 

94 143 74 1980 700.2 90.53 1.22 12.93 0.17 

This Work SPCFSM - 88 216 301 210 1980+ 342.7 44.30 0.21 12.93 0.05 

TABLE II: POWER AND ENERGY CONSUMPTION OF SPONGENT-88 ALGORITHM ON LUT- 4 TECHNOLOGY TARGET BOARDS 

Work Design Platform 
Powera (mW) LAT 

(Cycles) 

ENEa 

(uJ) 

ENEa/bit 

(uJ/bit) Static Dynamic Total 

Lara-Nino et.al [23] SPC- 88 

SP3 

27.25 0.81 28.06 1980 555.59 2.17 

This Work SPC- 88 27.25 0.68 27.93 1980 571.03 2.23 

This Work SPCFSM - 88 27.25 1.92 29.17 1980+ 577.56 2.25 

This Work SPC- 88 
VT4 

164.97 10.29 175.26 1980 3470.14 13.55 

This Work SPCFSM - 88 164.97 17.89 182.86 1980+ 3620.62 14.14 

SPC- 88: SPONGENT-88 Core only; SPCFSM-88: SPONGENT-88 Core with FSM 

SP3 - Spartan 3 xc3s50-5cp132; VT4 - Virtex 4 xc4vfx12-12sf363; a Frequency constrained at 100kHz 

TABLE III: RESOURCE UTILIZATION AND PERFORMANCE OF SPONGENT-88 ALGORITHM ON LUT- 6 FPGA BOARDS 

Work Design Platform 

Resource Utilization 
LAT 

(Cycles) 

Max. 

Freq. 

(MHz) 

Thru 

(Mbps) 

Thru/Slice 

(Mbps/Slice) 

Thrua 

(Kbps) 
Thru/Slicea 
(Kbps/Slice) FF LUT Slice 

Lara-Nino et al. 

[23] 
SPC- 88 

 

104 71 20 1980 302 39.04 1.90 12.93 0.64 

Jngk et al. [24] SPC- 88 - - 26 1980 309 39.95 1.53 12.93 0.49 

This Work SPC-88 94 71 20 1980 358 46.28 2.30 12.93 0.64 

This Work SPCFSM-88 211 203 98 1980 156.78 20.29 0.20 12.93 0.13 

This Work SPC- 88 
AT7 

94 69 20 1980 404.53 52.23 2.37 12.93 0.58 

This Work SPCFSM-88 211 147 57 1980+ 208.07 26.90 0.47 12.93 0.21 
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TABLE IV: POWER AND ENERGY CONSUMPTION OF SPONGENT-88 ALGORITHM ON LUT-6 TECHNOLOGY TARGET BOARDS 

Work Design Platform 
Powera (mW) LAT 

(Cycles) 
ENEa 
(uJ) 

ENEa/bit 
(uJ/bit) Static Dynamic Total 

Lara-Nino et al.[23] SPC- 88 

SP6 

19.91 1.28 21.19 1980 419.56 1.64 

This Work SPC- 88 19.91 0.46 20.36 1980 403.12 1.57 

This Work SPCFSM - 88 20.01 1.05 22.02 1980+ 440.40 1.72 

This Work SPC- 88 
AT7 

14.20 0.23 14.43 1980 285.71 1.11 

This Work SPCFSM - 88 15.30 0.89 16.19 1980+ 320.56 1.25 

*SPC- 88: SPONGENT- 88 Core only; *SPCFSM - 88: SPONGENT-88 Core with FSM 

*SP6 - Spartan 6 xc6slx16-3csg324; *AT7 -  Artix A7-100T; a Frequency constrained at 100Khz 
 

The static/quiescent, dynamic, and total power utilized 
by the proposed architecture is calculated using a set of 
design files with Xpower analyzer tool. Where static 
power is the power due to leakage current and dynamic 
power is the power consumed by the logic, load 
capacitance, and switching frequency of the design under 
implementation.  

The percentage increase/decrease is calculated using 
the formula: 

%increase/decrease= [|difference(intial_reported_value 
– new_reported_value)| / intial_reported_value ] × 100. 

The proposed architecture has been realized in two 
designs: a) Spongent-88 Core and b) Spongent-88 with 
the FSM, for an input block size of 256 bits which 
includes the round counter module in the latter. The 
metrics for both resource utilization and performance are 
obtained for each of the modules and compared with the 
reported works in the literature as given in Table I to 
Table IV. 

As seen in Table I, our proposed design on Spartan-3 
board uses only 94 flipflops which is 9.6% lesser than 
Lara-Nino et al. [23] which uses 104 flipflops. Although 
the look-up-tables utilized are the same as in work [23], 
because of fewer flipflops, the throughput has increased. 
An improved maximum operating frequency of 291Mhz 
is been reported. On FPGA the total area occupied is 
measured in terms of the number of slices occupied. 
Throughput/slice being the FOM (Figure of Merit), the 
proposed design reports increased by 18.75% in 
comparison with the work [23]. On Virtex 4 board the 
proposed design achieves a maximum operating 
frequency of 700.2MHz. The design is also realized with 
FSM for an input block size of 256-bit, where the design 
reports a maximum operating frequency of 102MHz on 
Saprtan-3 board and 342.7MHz on Virtex-4 board.  

The power consumption in terms of dynamic and 

quiescent power of the proposed design on Saprtan-3 and 

Virtex-4 of LUT-4 technology is tabulated in Table II. As 

discussed above our design uses lesser flipflops which 

has resulted in better consumption of dynamic power and 

a decrease in the total power consumed by 4.6% in 

comparison with work [23], which is related to the 

switching activity of the flipflops. 
Table III gives the tabulation of the area and 

performance metrics for the proposed design on Spartan -
6 and Aritx-7 board. As the flipflops remain the same on 
LUT-4 technology board which is 10.6% lesser than 
Lara-Nino et al. [23]. An improved maximum operating 
frequency of 358Mhz is been reported. As 
Throughput/slice is the FOM(Figure of merit), the 
proposed design reports increased by 21% in comparison 
with the work [23] and 50.3% with the Jungk et al. [24]. 

On Artix-7 board the proposed design achieves a 
maximum operating frequency of  404.53 MHz. The 
design is also realized with FSM for an input block size 
of 256-bit, where the design reports a maximum 
operating frequency of 158.78 MHz on Saprtan-6 board 
and 208.07 MHz on Artix-7 board.  

The power consumption of the proposed design on 
Saprtan-6 and Artix-7 of LUT-6 technology is tabulated 
in Table IV. As our design uses lesser flipflops which has 
resulted in better consumption of dynamic, which is 
related to the switching activity of the flipflops. And 
reports a decrease in total power by 3.91% in comparison 
with Lara-Nino et al. [23]. 

In the work Jungk et al. [24] the architecture uses FIFO 
for feeding the 8-bit input and a FIFO for reading the 8-
bit output, along with a STATE register. Hence 
increasing the area utilization and number of slices 
occupied. When compared with the architecture by Lara-
Nino et al. [23], the output is taken from the STATE 
register after being updated and keeps the assert signals 
of absorption and squeeze phase outside the architecture.  

Whereas even our proposed algorithm uses a single 
STATE register which is clocked and updated for the 
subsequent permute function rounds of the algorithm 
either for absorption or squeeze phase. The output is 
taken from the permutation layer at the end of 45 rounds 
of the squeeze phase respectively. The proposed 
architecture cascades absorption and squeeze phases of 
the algorithm in the same architecture by relevant control 
signals and hence making the throughput/slice of the 
proposed architecture better than the works in [23, 24] by 
21% and 50.03%, respectively on LUT-6 technology 
board. 

B. ASIC Implementation 

The proposed architecture was realized on the ASIC 
domain to determine the implementation costs on silicon 
which proposes a different challenge when compared to 
realizing it on FPGA. The analysis is carried out by 
implementing the proposed architecture on different 
technology nodes and standard cell libraries and studying 
the behavior of implementation cost for the sequential 
and combinational logic of the proposed architecture for 
the SPONGENT-88 lightweight Hash algorithm.  

The area occupied by the design on silicon is 
determined using the metric gate-equivalence which 
accounts for the physical area required to implement it on 
the circuit/board and is measured in µm2, one gate-
equivalence is defined as the area occupied by a 2-input 
NAND gate on the respective technology node or 
standard cell library. The gate-equivalence is a 
technology-independent metric to measure the size 
occupied by the design. 
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Fig. 5. Layout of proposed architecture on TSMC180nm node. 

Hardware implementations of lightweight crypto-

graphic primitives are classified as ultra-lightweight, low-

cost, and lightweight occupying up to 1000, 2000, and 

3000 gate equivalence respectively. The authors in [2] 

classify the lightweight cryptographic primitives in two 

categories as ultra-lightweight cryptography and 

ubiquitous cryptographic, where the latter deals with 

primitives fulfilling a unique purpose while satisfying 

specific and narrow constraints and the former encompass 

more versatile algorithms/primitives both in terms of 

implementation trade-offs and functionality. 

A lightweight Hash algorithm's footprint depends upon 

two factors, first the number of state bits (inclusive of the 

key schedule for block cipher based) and the size 

occupied by the functional and control logic used to 

realize a round function. The proposed architecture has a 

serialized approach with a data path size of 88 bits, it is 

designed to utilize lesser flip-flops and has a good 

tradeoff between the sequential and combinational logic 

required to realize the Spongent-88 sponge-based 

lightweight Hash algorithm. The proposed design has 

reported 1204 GE with 45 cycles required for each block 

of data on UMC180nm technology in comparison to 1232 

GE which was originally reported work of Spongent-88 

with the same data path [14] on a similar technology node. 

The layout of the proposed architecture is seen in Fig. 5. 

The results obtained on TSMC180nm technology are 

seen in Table V which gives the detailed area occupied 

for the individual modules Permute, Sbox, and Player. 

Table VI gives the gate-equivalence obtained from 

TSMC180nm for SPONGENT-128 and SPONGENT-224 

of the proposed architecture. Therefore, this work has 

reported the 1204 GE occupied for the 88-bit data path on 

TSMC180nm technology, whereas the original work [16] 

reports 1232 GE on a similar technology node, i.e. 

UMC180, the proposed work has a 2.27% decrease in the 

area occupied. 

The proposed architecture is also realized for 

SPONGENT-128 and SPONGENT-224 keeping the 

architecture similar with an increase in the number of 

instantiations of Sbox, Permutation bits, and internal 

State register for each of the variants respectively. The 

proposed architecture for SPONGENT-128 and 

SPONGENT-224 have security bounds that are 

comparable with SHA-1 and SHA-2 [8] NIST 

recommended Hash algorithms. The gate-equivalence of 

the latter variants of SPONGENT is tabulated in Table VI, 

where the footprint is reduced by 3.5% and 6.4% for 

SPONGENT-128 and SPONGENT-224 respectively. 

To have a familiar comparison of the proposed 

SPONGENT-88 architecture under 1000 GE with the 

original work, the proposed work has also implemented 

the algorithm in a serialized architecture, where a single 

S-box module is utilized instead of 22 instances of the S-

box, keeping the rest of the architecture the same. This 

work has achieved 819 GE on TSMC180 technology 

node.  

TABLE V: AREA OF THE PROPOSED WORK ON TSMC180NMNODE 

Design Data path (bits) Module Gate-equivalence (GE) 

SPONGENT- 88/80/8 88 

Permute 16.66 

S-box 
1- instance 27.00 

22- instance 594.00 

Permutation layer (Player) 0.00 

Glue Logic 593.34 

Total 
(Sequential -537.67) + (Combinational -

599.01 + Inverter - 68.00) = 1204 

TABLE VI: AREA OF THE PROPOSED WORK ON TSMC180NM TECHNOLOGY FOR SPONGENT-128 AND SPONGENT-224 VARIANT 

Design Data path (bits) Module Gate-equivalence (GE) Total (GE) 

SPONGENT-128/128/8 
136 

Permute 45.12 

1790 S-box 34- instance 918.00 

Glue logic 826.88 

SPONGENT-128/128/8[14] - - 1855 

SPONGENT-224/224/16 
240 

Permute 121.31 

2995 S-box 60-instance 1620 

Glue logic 1253.69 

SPONGENT- 224/224/16[14] - - 3203 
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The power consumption for a frequency constrained at 

100kHz for the proposed SPONGENT-88, 128, 224 

variant as computed on the ASIC platform on the genus 

tool is tabulated in Table VII. As the power computed is 

on different technology nodes of the original work [14]. 

Since power consumption cannot be compared across 

different technology nodes. The proposed work consumes 

lesser power on higher technology nodes as referred to in 

Table VIII. Due to the availability of all the technology 

node-dependent files required to generate the cells, power, 

and timing reports, the proposed work was carried out on 

the TSMC180 node. The work [25] also implements the 

Spongent-88 algorithm in its full data path of 88 bits. The 

proposed work reports a better reduction in the area by 

15% and in power by 46% in comparison with the latter 

one as observed in Table VII. The lightweight hash 

algorithms discussed in the Related works section have 

been classified on gate-equivalence of hardware 

implementation as lightweight, low-cost, and ultra-

lightweight cryptographic primitives in Table VIII, Table 

IX, and Table X with gate equivalence between less than 

1000 GE, 2000-3000 GE, and 1000-2000 GE respectively, 

along with the security bounds on pre-image, second pre-

image, and collision attacks for the each of the algorithms. 

The proposed algorithms for Spongent variants, 

SPONGENT-88 with a data path of 4-bit, SPONGENT-

128 with a data path of 136-bit, and SPONGENT-224 

with a data path of 240-bit. Classify under the lightweight, 

low-cost, and ultra-lightweight cryptographic primitives.  

Under lightweight primitive, our proposed design for 

SPONGENT-88 with 4-bit data path achieves increased 

throughput by 46% in comparison with work [25]. 

TABLE VII: POWER CONSUMPTION OF THE SPONGENT FAMILY FOR 88/128/224 VARIANT WITH THE PROPOSED SPONGENT ARCHITECTURE FOR A 

FREQUENCY OF 100KHZ 

Hash Algorithm 
Security 

Hash (bit) Datapath Cycles Process (µm) Power (µW) 
Pre. 2nd Pre.  Col. 

Spongent-88/80/8 [14] 80 40 40 88 88 45 0.13 1.57 

Spongent-88/80/8 [25]  80 40 40 88 88 45 0.18 1.5 

This Work Spongent-88 80 40 40 88 88 45 0.18 1.37 

Spongent-128/128/8 [14] 120 64 64 128 136 70 0.13 3.58 

Spongent-128/128/8 [25]  120 64 64 128 136 70 0.18 12.85 

This Work  Spongent-128 120 64 64 128 136 70 0.18 3.01 

Spongent-224/224/16 [14] 208 112 112 224 240 120 0.13  5.97 

Spongent-224/224/16 [25] 208 112 112 224 240 120 0.18 22.98 

This Work Spongent-224 208 112 112 224 240 120 0.18 4.91 

TABLE VIII: COMPARISON OF DIFFERENT HASH ALGORITHMS FOR GE< 1000 

Algorithm 
Parameters Security Bounds 

Data path Cycles Process (µm) Area (GE) Thru (kbps) 
n b C r Pre 2nd Pre Col 

PHOTON [11] 80 100 80 20 64 40 40 4 708 0.18 865 2.82 

Spongent [14] 80 88 80 8 80 40 40 4 990 0.13 738 0.81 

LHash [13] 80 96 80 16 64 40 40 4 666 0.13 817 1.44 

Spongent [14] 80 88 80 8 80 40 40 4 990 0.18 759  * 

Spongent-88 [25] 80 88 80 8 80 40 40 4 990 0.18 967 1.5 

This Work: 
Spongent-88 

88 88 80 8 80 40 40 4 990 0.18 819 0.81 

n: Hash digest, b: internal state size, C: capacity, r: rate, Pre: preimage,  2nd – Pre: Secondary preimage, Col: collision, * not reported 

TABLE IX: COMPARISON OF DIFFERENT HASH ALGORITHMS FOR 1000>GE< 2000 

Algorithm 
Parameters Security Bounds 

Data path Cycles Process (µm) Area (GE) Thru (kbps) 
n b C r Pre 2nd Pre Col 

PHOTON [11] 

128 144 128 16 112 64 64 4 996 0.18 1122 1.16 

80 80 20 16 64 40 40 20 132 0.18 1168 12.15 

160 160 36 36 124 80 80 4 1132 0.18 1396 2.70 

128 128 16 16 112 64 64 24 156 0.18 1708 10.26 

224 224 32 32 192 112 112 4 1716 0.18 1735 1.86 

Spongent [14] 

88 88 80 8 80 40 40 88 45 0.13 1127 17.78 

128 128 128 8 120 64 64 4 2380 0.13 1060 0.34 

160 160 160 16 144 80 80 4 3960 0.13 1329 0.40 

224 224 224 16 208 112 112 4 7200 0.13 1728 0.22 

88 88 176 88 88 44 88 4 8910 0.13 1912 0.99 

256 256 512 256 256 128 256 4 9520 0.13 1950 0.17 

U-Quark [12] 128 136 128 8 120 64 64 1 544 0.18 1379 1.47 

D-Quark [12] 160 160 128 8 144 80 80 1 704 0.18 1702 2.27 

LHash [13] 

128 128 120 8 120 60 60 4 882 0.18 1028 0.40 

128 128 120 8 120 60 60 4 72 0.18 1200 4.94 

128 128 112 16 96 56 56 4 882 0.18 1028 1.21 

128 128 112 16 96 56 56 4 72 0.18 1200 14.81 

Keccak-f [8] 80 100 80 20 60 40 40 4 800 0.18 1250 1.50 

DM-Present [19] 
80 - 64 - 64 32 64 4 547 0.18 1600 14.63 

128 - 128 - 64 32 64 4 559 0.18 1886 22.90 

Spongent-128 [14] 128 128 128 8 120 64 64 4 70 0.18 1855  * 

This Work: 

Spongent-128 
128 128 128 8 120 64 64 136 70 0.18 1790 11.42 

n: Hash digest, b: internal state size, C: capacity, r: rate, Pre: preimage,  2nd – Pre: Secondary preimage, Col: collision, * not reported 
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TABLE X: COMPARISON OF DIFFERENT HASH ALGORITHMS FOR 2000 >GE< 3000 

Algorithm 
Parameters Security Bounds 

Data path Cycles Process (µm) Area (GE) Thru (kbps) 
n b C r Pre 2nd  Pre Col 

Spongent [14] 

128 128 256 128 128 64 128 4 18720 0.13 2641 0.68 

160 160 160 16 144 80 80 176 90 0.13 2190 17.78 

224 224 224 16 208 112 112 240 120 0.13 2903 13.33 

224 224 224 112 208 112 112 4 14280 0.13 2371 0.78 

Photon [11] 

160 160 36 36 124 80 80 28 180 0.18 2117 20.00 

224 224 32 32 192 112 112 32 204 0.18 2786 15.69 

256 256 32 32 224 128 128 8 996 0.18 2177 3.21 

u-Quark [12] 128 136 128 8 120 64 64 8 68 0.18 2392 11.76 

d-Quark [12] 160 160 128 8 114 80 80 8 88 0.18 2819 18.18 

s-Quark [12] 224 224 128 8 192 112 112 1 1024 0.18 2296 3.13 

DM- PRESENT [19] 
80 - 64 - 64 32 64 64 33 0.18 2213 242.42 

128 - 64 - 64 32 64 128 33 0.18 2530 387.88 

H- PRESENT [19] 128 - 64 - 128 64 64 8 559 0.18 2330 11.45 

Keccak-f [8] 128 200 128 72 64 64 64 8 900 0.13 2520 8.00 

GLUON [10] 
64 - - - 128 - 64 8 66 * 2071 12.12 

80 - - - 160 - 80 16 50 * 2799 32.00 

Spongent- 224 [14] 224 224 224 16 208 112 112 240 120 0.18 3203 * 

This Work: 

Spongent-224 
224 224 224 16 208 112 112 240 120 0.18 2295 13.33 

n: Hash digest, b: internal state size, C: capacity, r: rate, Pre: preimage,  2nd – Pre: Secondary preimage, Col: collision, * not reported 

 

VI. CONCLUSION 

This work has evaluated the hardware implementation 

of the proposed architectures for the SPONGENT-88, 

SPONGENT-128, and SPONGENT-224 variant of the 

SPONGENT lightweight Hash algorithm for the 

proposed architecture. The SPONGENT-88 is been 

compared with state-of-art works done on the FPGA 

platform. In the ASIC domain, the proposed work is been 

carried out on TSMC180nm technology and has been 

compared to the original work reported [14]. To increase 

the throughput of the architecture on FPGA a fair balance 

of Look-up-tables and Flipflops is achieved in the 

proposed architecture. Since throughput/slice is the FOM 

(Figure of Merit) for measuring the performance of the 

proposed design and the work has achieved 50.03% and 

21% more throughput/slice in comparison with the works 

Lara-Nino et al. [23] and Jungk et al. [24] on Spartan-6 

technology board. Original work [14] reports 1232 GE 

and the proposed architecture on the similar technology 

occupies 1204 GE with a reduction of 2.27% in the area. 

Recent works also [26] show interest in SPONGENT 

algorithm as an authentication primitive in blockchain 

technology. This work can be further used to design and 

develop a lightweight authenticated encryption or 

authenticated permutation encryption engine/module at 

end nodes with both data privacy/confidentiality with 

authentication at end nodes [27]. 
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