
Power, Performance and Area Analysis of

Sponge Based Lightweight HASH Function

Heera G. Wali* and Nalini C. Iyer

 School of Electronics and Communication, KLE Technological University, Hubli, Karnataka, India

Email: heerawali@kletech.ac.in* (H.G.W.); nalinic@kletech.ac.in (N.C.I.)

Abstract—The Internet of Things refers to uniquely
distinguishable devices communicating with each other.
Communication is largely on resource-constraint devices
which would generate large volumes of data, the security,
authenticity, and integrity of devices being essential.
SPONGENT-88 variant of the SPONGENT family is a
lightweight Hash algorithm suitable for authenticating
resource-constrained devices in an IoT environment or
WSN (Wireless Sensor Network) as it has the smallest
footprint in comparison with the sponge-based Hash
algorithm. Conventionally most of the security primitives
are realized using more sequential logic which leads to an
increase in the area occupied and latency. This work
proposes a serialized architecture with a balance in
sequential and combinational logic that uses lesser flipflops
with a 21% increased performance for throughput/slice in
comparison with reported works on target LUT-6
technology on FPGA, realized on the 14.2 ISE design suite.
The work has a 4.6% decrease in quiescent power and
dynamic power reported on the 14.2 ISE design suite for
LUT-6 technology. This work has also achieved a Gate-
Equivalence (GE) utilization for the proposed design on
TSMC180 technology for a data path of 88-bit, while the
proposed work reports 1204GE. In this work, a scaled-up
architecture of the proposed SPONGENT-88 is realized for
SPONGENT-128 and SPONGENT-224 as these variants
provide improved security bound and is in comparison with
the security provided by SHA-1 and SHA-2 algorithms. The
scaled architecture for the latter variants of SPONGENT
algorithms has achieved reduced Gate-Equivalence (GE) in

comparison with the reported work.

Index Terms—Hash algorithm, lightweight authentication,
sponge-based authentication

I. INTRODUCTION

Lightweight Cryptography (LWC) is seen to be

spanning into existence as the last two decades saw the

proliferation of a variety of interconnected devices in an

environment known as the IoT(Internet-of-Things)/

WSN(Wireless Sensor Networks). With these devices

humongous amount of data is been generated. However,

due to a lack of effective security and privacy protocols,

most IoT devices are prone to hacking. Therefore

addressing the security and privacy needs of these

connected low-cost pervasive devices with limited

computations is of prime importance. The conventional

cryptographic primitives that were designed were

Manuscript received December 2, 2022; revised February 3, 2023;

accepted February 12, 2023.

*Corresponding author: Heera G. Wali

computationally complex and hence were not applicable

to the security and privacy needs in the IoT/WSN

paradigm.

Lightweight cryptography is not bound to replace

conventional cryptography while they are efficient but

was designed to address the specific use cases at the cost

of having a narrower range of applicability. The goal of

lightweight cryptography is to enable a wide range of

connected devices with different applications such as

health monitoring systems, automated management of

supply chains, public transportation, telephone cards, etc.

The connected edge devices in IoT/WSN are possible

to identify because of different tagging technologies,

making all the end nodes/physical objects connect to

communicate and share information. The communication

between the end devices must be secured in IoT/WSN

with confidentiality, integrity, and authentication services.

Several new factors are constrained for operating under

these environments like limited computational power,

RAM size, and ROM size with lesser footprint. But these

constrained IoT devices/end nodes use traditional security

measures [1], which computationally require more power

and memory. Hence IoT-enabled devices were the

medium for the emergence of a new field, lightweight

cryptography(LWC). With this, a few software and

hardware implementations of lightweight ciphers are

designed for IoT applications. These are broadly

classified as hash functions, stream ciphers, and block

ciphers. Software implementations have lower costs and

provide more flexibility in manufacturing and

maintenance. However, the literature proposes two core

categories of lightweight cryptography depending on

different types of applications with hardware (HW) and

software (SW) attributes.

• Ultra LWC: For a specific application and security

requirement in a highly resource-constrained

environment (e.g. specific microcontroller, for only

one of the security measures Hash/encryption/

authentications) occupying a footprint lesser than

1000GE for security primitives.

• Ubiquitous LWC: IoT end nodes (e.g. FPGA,

general-purpose microcontroller, one/more security

primitives) occupying a footprint of less than

3000GE for security primitives at the end nodes [2].

The Ultra LWC finds applications in domains like IIoT

(Industrial IoT) where the security and privacy of the

connected end nodes need to find be very specific and

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

245doi: 10.18178/ijeetc.12.4.245-256

highly resource constrained. Ubiquitous LWC is directed

towards IoT/WSN end nodes, that have varying end

application that requires different security measures.

Most of the research is primarily based on ubiquitous

lightweight cryptography. Although ultra-lightweight

cryptography is implementable with existing regular

resources. There is always a need to provide a tailor-

made/optimized solution for these lightweight

cryptographic primitives to have a lower footprint and

improved performance.

Lightweight cryptography has two forms, likewise to

conventional cryptography, known as symmetric and

asymmetric. A secure hash algorithm is one part of

cryptography protocols that require quick processing and

authentic data transmission. A lightweight cryptography

Hash function is required in IoT applications that involve

intensive and sensitive data transactions, as these devices

have to primarily authenticate themselves to

communicate. This work focuses on lightweight Hash

primitives for IoT/WSN based applications.
One of the areas where lightweight cryptography finds

its applicability is IoT-based healthcare is an area where
lightweight cryptographic primitives can be harnessed.
Here a large amount of private data is being collected,
and the security of the healthcare services provided can
impact the well-being of the patient's life [3]. These
devices need different cryptographic primitives such as
encryption, authentication, and authenticated encryption
to be implemented and it is challenging, because of
resource constraints as it also connects the edge/fog
computing layers to medical databases and cloud
computing servers.

Blockchain is another emerging technology that is
being deployed in the IoT architecture which has yielded
numerous issues, challenges, and advantages [4].
Authentication of the connected nodes is essential in
integrating blockchain in IoT. Sponged-based Hash
primitives are found to be more suitable in terms of
performance and energy consumption for blockchain
based applications which also facilitates building a robust
IoT architecture [5].

The paper is organized as follows, the Introduction
section followed by related works of the lightweight Hash
algorithm in Section II, in Section III background of the
sponge-based Hash construction, the proposed
architecture for the SPONGENT-88 algorithm in Section
IV, and results and discussion in Section V.

II. RELATED WORKS

Many advancements in the field of lightweight
cryptography have been observed with the end goal being
to tailor-make the conventional cryptographic algorithm
for resource-constrained platforms/end nodes.
Lightweight algorithms must be designed to have a lower
footprint with improved performance. Although many
lightweight cryptographic algorithms have been
published the security analysis is performed at the
algorithmic level and still finds a need to keep in
consideration the physical attacks on these primitives [6].

S. Aruna et al. [7] have outlined the hardware and
software implementation challenges of lightweight

cryptographic primitives. They provide the classification
of Hash function construction mode with lightweight
Hash function for real-time applications.

The lightweight authentication algorithms can be
classified under three constructions a) Davies–Meyer, b)
Merkle-Damgard, and c) Sponge. The lightweight Hash
algorithms under these different constructions for
resource-constrained environments which occupy areas
less than 3000GE are keccak-f[200] [8], ARMADILLO
[9], GLUON [10], PHOTON [11], QUARK [12], LHash
[13], and SPONGENT [14].

The authors of the work [15] report a comparative

analysis of the sponge-based Hash algorithms for IoT

applications. They present a comparison of the algorithms:

keccak-f[200] [8], GLUON [10], PHOTON [11],

QUARK [12], LHash [13], and SPONGENT [14] in

terms of throughput, power, and area where

SPONGENT-88 [14] is having lowest power

consumption with 1.57 μW among the Hash algorithms

with an area of 738GE.

SPONGENT [14] is also the underlying primitive used

in the NIST LWC finalist algorithm Elephant [16]. It’s a

block cipher based on permutation and uses encrypt-then-

MAC procedure for authentication.

The details of the various author's contributions to the

Hash algorithms keccak-f[200] [8], ARMADILLO [9],

GLUON [10], PHOTON [11], QUARK [12], LHash [13],

and SPONGENT [14] which are under 3000GE are

discussed below in this section.

Stephane Badel et al. [9] propose a general-purpose

cryptographic function design for RFID (Radio

Frequency Identification) and sensor networks with

different design construction for applications like

challenge-response protocols, hashing, and digital

signatures, built on Merkle Damgard construction. A

serialized design of ARMADILLO occupies 2923GE on

180nm technology node and has better performance in

throughput and throughput per GE with frequency

constrained at 100kHz in hashing design construction in

comparison with SHA-1, and SHA-256.

Keccak-f[200] and Keccak-f[400] by Bertoni et al. [8]

are winners of NIST SHA-3 Hash function competition.

Keccak-f[200] produces a 64-bit Hash digest with an

internal state permutation of 200-bit, the permutation

function is based on sponge construction and finds itself a

suitable Hash algorithm for a resource-constrained

environment. Keccak-f is been designed for different

permutation sizes and variable-length output digest

respectively while keeping the permutation function the

same. A serialized implementation of Keccak-f[200] is

realized on 130nm technology using 2520GE for a

frequency constrained at 100kHz.

PHOTON [11] (Sponge-based construction) was

designed with sponge-based construction with AES-like

primitive as an internal unkeyed permutation. It has been

obtained as the most compact Hash function with

1120GE with 64-bit security bounds on pre-image and

collision attacks with a new method for column mixing

layer in a serial way, which led to lowering the area

requirement as compared to the original AES algorithm.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

246

PHOTON has been proposed with variants ranging from

Hash digest size of 80-bit to 256-bit with pre-image

security bounds ranging from 64-bit to 224-bit

respectively. The smallest variant of PHOTON occupies

865GE and the largest occupies 4362GE.

Berger et al. [10] proposed a sponge-based Hash

algorithm GLUON after the publishing of the PHOTON

and SPONGENT algorithms. It is derived from two

stream ciphers F-FCSR-v3 and X-FCSR-v2. GLUON is

designed for three different message digests with varying

security levels. The lightest instance is GLUON-128/8

with 64-bit security level that fits in 2071GE and the

heaviest variant GLUON-224/32 performs well on the

software platform. This is based on Feedback with Carry

Shift Register (FCSR) while the design is heavier than the

basic building blocks of Quark and PHOTON, the well-

proven design of FCSRs has been highlighted as the

strength of the GLUON algorithm. It is regarded as better

in area than Quark variants. In terms of throughput, it’s

similar to the 64-bit of the Quark variant only. When

compared to PHOTON the area achieved by GLUON is

not comparable at all but performs better in throughput.

Authors of QUARK (Sponge-construction) Aumasson

et al. [12] designed three variants U-QUARK, D-

QUARK, and S-QUARK. Among the variants where the

lightest version is U-Quark fits with 1379GE with a

minimum of 64-bit security against attacks. S-Quark has

higher security bound with 112 bits realized with 2296GE

on 180nm technology node. When compared with the

lightweight sponged designs SPONGENT and PHOTON

which appeared after the publication of Quark, Quark has

a better security margin compared to PHOTON and better

throughput than SPONGENT but has a higher footprint

than both PHOTON and SPONGENT.

LHash by Wenling et al. [13] is a lightweight Hash

algorithm LHash that employs a Generalized Feistel

structure (GFS) in the internal permutation as this

structure provides good diffusion speed in the

permutation layers. This Hash function supports three

different digest sizes: 80-bit, 96-bit, and 128-bit,

providing preimage security from 64-bit to 120-bit, and

second preimage and collision security from 40-bit to 60-

bit. LHash requires about 817 GE and 1028 GE with a

serialized implementation. In faster implementations

based on function T, LHash requires 989 GE and 1200

GE with 54 and 72 latency cycles per block, respectively.

LHash is known to have the lowest energy consumption

among the existing lightweight Hash algorithms with

moderate security levels.

Lesamnta-LW [17] is a 256-bit Hash function designed

for low-end devices with an 8-bit processor. The basic

building block under Lesamnta is AES with 256-bit

plaintext and a 128-bit key. Lesamnta-LW is the

lightweight version of Lesamnta. Lesamnta -LW uses a

smaller key size than the block size for the underlying

algorithm, whereas the LW1 version does not have a

feedforward of inputs hence leading to a reduction in

memory. It provides 120-bit security bounds against

collision and preimage attacks. It has been realized on

90nm technology node occupying 8.24K gates.

Lesamnta-LW was been designed for applications on

low-cost devices that require higher security bounds.

Even though the gate-equivalence of Lesamnta is more

than 3000GE, it’s an LWC NIST [18] recommendation

under lightweight Hash functions, which can be deployed

in the software platform.

Hash functions can also be realized using block cipher

as the underlying primitives. This is being realized in

Davies-Meyer construction where a block cipher is used

to construct a hash primitive. Bogdanov et al. [19]

constructs a Hash function from a block cipher

PRESENT with 64-bit and 128-bit Hash outputs. The

design is been proposed with two combinations under 64-

bit Hash digest as DM-PRESENT-80 and DM-

PRESENT-120 using the Merkle-Damgard construction

with the key size of 80-bit and 120-bit respectively. They

propose H-PRESENT-128 under 128-bit Hash digest

with a key size of also 128-bit. The serialized and parallel

architecture of DM-PRESENT and H-PRESENT achieve

a footprint of 1600GE to 4256GE under various variants

of the above-mentioned Hash algorithms.

SPONGENT [14] was proposed in 5 designs (groups)

with 13 variants to meet different collision and secondary

preimage resistance for meeting various implementation

constraints. It’s known to be occupying the lesser area

among lightweight sponge-based algorithm Quark and is

comparable with the area of PHOTON. The group of all

Spongent variants for the respective design group

produces the same n-bit Hash digest. The SPONGENT-

88 variant functions are designed with low preimage

security requirements for highly restricted resource

environments. They can be ideally used in RFID

protocols and for PRNGs. For highly constrained

applications with low and middle requirements for

collision security SPONGENT-128 and SPONGENT-160

can be the best fit. The design rationale of the

SPONGENT-128 and SPONGENT-160 functions also

provides compatibility with the SHA-1 [8] interfaces. The

parameters of SPONGENT-224 and SPONGENT-256 are

relatable to those of a subset of SHA-2 [8] and SHA-3 [8],

hence making Spongent functions compatible with most

lightweight embedded applications. The Hash function in

general has received very less attention from

cryptanalysis.

SPONGENT S-box was classified as one of the

potentially good S-box by Zhang et al. [20], as the S-box

is the only nonlinear component in the cryptographic

primitive and plays an important role against differential

cryptanalysis. According to the state-of-art differential,

cryptanalysis is more important for Hash function than

linear cryptanalysis. Therefore, SPONGENT lightweight

Hash algorithm has the merits of addressing the resource-

constrained requirements of end nodes/WSN for different

applications. This work focuses to achieve improved

throughput and lower footprint in comparison with the

state-of-art work of the SPONGENT-88 algorithm. The

work proposes a serialized architecture for the

SPONGENT-88 variant of the SPONGENT family for

having improved throughput and footprint under

ultralightweight cryptography. The same architecture is

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

247

being scaled for different SPONGENT designs and it

achieves an improved footprint in comparison with the

original work [14].

III. BACKGROUND

It's more difficult to implement a Hash function than a

block cipher because the internal state size of the Hash

function is much larger and requires a greater number of

flip-flops/registers for realizing the same. For example,

the SHA-3[8] uses a 1600-bit internal state whereas any

lightweight block cipher would use a 64-bit block size.

But when it comes to the security provided by Hash-

based algorithms in terms of pre-image, secondary pre-

image, and collision attacks are much more reliable than

compared the lightweight block cipher.

The security measures for Hash algorithm are as

follows:

• Preimage resistant: If H is a Hash function and x is

the block of data to the function, it should be

preimage resistant or one-wayness provided an

output value H(x) Hash value, it should be difficult to

compute x to from H(x). To find an input message

that would map to this output. With n input-output

size of the Hash function, the complexity of the

attack is 2n.

• Secondary preimage resistance: Also known as weak

collision resistance: for a known Hash value H(x) of

a corresponding message x, it should be difficult to

find another message H(x') with the same Hash value

i.e., H(x) ≠ H(x'). Once again the complexity of the

secondary preimage attack is 2n.

• Collision resistant: It should be infeasible to find two

messages which would lead to the same digest. This

phenomenon is best illustrated with the birthday

paradox problem which refers to given a set of m

persons at least two of them will have their birthday

on the same day, thus finding the complexity of such

a collision is approximated to 2n/2.

With the growing number of connected systems, the

secure communications of these systems become of

paramount importance. As these devices are evolving in

numbers, and hence they have a low time to market for

having improved performance at the entry-level. Hence,

to make these devices reliable and robust to work in

different environments for several applications, it

becomes necessary to provide security solutions for them

[21]. A medium security level or tailor-made security is

often sufficient in this area with better performance.

Hence, lightweight cryptography finds its applicability

here, because the algorithms are designed to have a lesser

footprint with reduced security properties. A tradeoff

between area and speed is achieved in the lieu of reduced

security for devices under strict resource constraints such

as RFID tags [22]. Lightweight Hash functions typically

are used as lightweight signature schemes, RFID security

protocols, or random number generators for

authentication.

A. Sponge-Based Construction

A commonly used theoretical model for generating a
message digest in cryptography is the well-known
random oracle model. The random oracle function inputs
a variable-length input message and produces a message
digest of arbitrary length. Ideally, a sponge function uses
a variable round-based random permutation which works
on the same principle of random oracle. As shown in Fig.
1, which gives the basic sponge construction, a sponge
function consists of three basic components: The
initialization phase, absorption phase, and squeeze phase.
The initialization phase comprises a padding function to
resist length extension attacks. The absorption and
squeeze phases use the permute function of variable
rounds. First, in the initialization phase, the input
message m is padded, which results in the padded
message m of length |l|. Then the m is divided into |l|/r
blocks of mi, each of r bits. The permute function πb has
an internal STATE b, these mi blocks are added to the
internal state, followed by the computation of the permute
function. After all, blocks are absorbed, one or more
blocks with rate r are derived from STATE in the
squeezing phase as h1, h2, h3, etc. respectively. The most
interesting feature of lightweight Hash functions is its
adaptable rate r, which is independent of the security
level, even if the state size b, b>= r + C, where C is the
capacity, increases (or decreases) accordingly. This
parameter can be used as a design criterion for having a
reduced data path of the algorithm. It also controls the
number of bits that get absorbed per computation of the
underlying permute function. Hence, it is possible to
construct a hash function that consumes less memory
compared to other well-known domain extenders such as
the wide-pipe Merkle-Damgard construction, which
usually requires twice the state size for the desired
security level. Among the lightweight sponge-based hash
functions, Quark [12] was designed with minimized state
size, using the wide-pipe Merkle-Damgard construction.
This usually requires twice the state size for the desired
security level. Due to many inputs for the Boolean
function in the round transform, it cannot be promised to
achieve the smallest logic size. But the Spongent [14]
results in achieving a significantly more compact design
by keeping the round function very simple and hence
reducing the logic size close to the smallest theoretically.

Fig. 1. Sponge-based construction.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

248

The proposed architecture focuses on reducing the
SPONGENT-88 variant which is suitable for resource
constraint devices to have better throughput and area
occupied on both FPGA and ASIC implementation. We
have explored the fair balance in the sequential and
combinational logic with horizontal data path folding to
realize the architecture. As on FPGA, the number of
slices occupied on it depends on the distribution of both
sequential and combinational logic, combinational logic
synthesizes as Look-up-table(LUT) and sequential logic
synthesizes as Flipflops(FF). The proposed design uses
only one STATE register, and the rest of the logic

required to update the register is realized using
combinational logic with respective internal modules.

IV. PROPOSED ARCHITECTURE FOR SPONGENT-88

SPONGENT algorithm has five parameters (n, b, c, r,
R) to instantiate a specific Hash function. These
parameters vary for different variants of the algorithm.
The parameters for SPONGENT-88 are n = 88, b = 88, c
= 80, r = 8, and R = 45 where n is the output, b is the
internal state size or width, r is the rate and c is the
capacity and R is the number of permutation rounds.

Fig. 2. The proposed architecture for SPONGENT-88/80/8 lightweight sponged-based Hash algorithm

The architecture developed for SPONGENT-88 is a

serialized iterative architecture using a single module for

the permute block which is used for the transformation of

the b bits π88. Initially, all the bits of the STATE are zeros,

where the state is a register. In the first round, the input

message block of r bits is XOR-ed with the value in the

state register in the permute function. In each round, the

STATE register is then XOR-ed with the contents of an

LFSR, reversed bits of LFSR, and then processed by the

substitution and permutation layers as seen in Fig. 2. The

proposed architecture makes use of a single-clocked state

register and a single-clocked linear feedback shift register,

the substitution byte, and the permutation modules are

asynchronous, i.e. they change once any change in the

input is triggered. Once the reset signal is asserted the

state register is initialized to zero and Linear feedback

shift register (LFSR) register is initialized to 6-bit binary

value 000101. A counter module is implemented which is

clocked for each active round of the SPONGENT-88

algorithm, it is an up-down counter. This architecture

cascades both the absorption and squeeze phases. After

the reset signal goes low, enable signal is asserted to start

the permute function, where the 8 bits of the message are

concatenated with the zeros of the state register. As the

enable signal goes low, the absorption signal is asserted

and the contents of the state register are processed by

XOR-ing the contents of the Linear feedback shift

register with the most significant bits of the state register

and reversed contents of the Linear feedback shift register

with the least significant bits of the state register. The

linear feedback shift register gets updated for every clock

cycle. For each clock cycle the b [4] and b [5] bit of the

shift register gets XOR-ed and the contents of the register

shift by 1 position appending the XOR-ed bit at the MSB

of the register. Then the state register is processed

through the substitution byte module which consists of 22

Sbox modules called parallelly to create confusion in the

bits of the state register followed by 88-bit permutation

module to provide diffusion of the state register bits. The

Sbox module is implemented using lookup tables, i.e.

using mux’s, and permutation is simple hard wiring of the

state register bits. This whole process comprises a single

round of permute function, which repeats for 45 rounds

for the same message block of size 8 bits only. Each

message block of 8 bits is subsequently XOR-ed with the

state register. The absorb signal remains high until all the

message bits in terms of r-bit rate are processed, where r

= 8-bit. Then the absorb signal goes low and the squeeze

signal is asserted and the state register now undergoes the

permute function for 45 rounds for producing a Hash

value of 8 bits. This process continues until the squeeze

phase produces a Hash value of 88 bits. In the squeeze

phase, when the counter rolls from the value 44 to 0, the

8-bit Hash value is tapped from the permutation layer.

Similarly the same repeats for 88 bits of the Hash value to

be generated.

The architecture for the proposed Spongent-88 with

FSM is designed with the control signals absorb, squeeze,

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

249

and enable with four states in the FSM. The states are

CRTL_INIT, CRTL_ABSORB, CRTL_SQUEEZE,

PERMUTE, and CRTL_DONE. It was not found

necessary to have a state for padding the message bits, as

the architecture pads only a byte of information. Hence

this is taken care of in the CRTL_INIT state. The FSM is

written to produce a Hash digest of 88-bit from a message

block of 256-bit to have similar comparisons with the

works reported in the literature. In the CRTL_ABSORB

state, all the message bits inclusive of padding are

absorbed in a block size of r bits, and each r bits undergo

the PERMUTE state for 45 rounds, as it is being

determined for the Spongent-88 variant by the original

work [5]. As seen in Fig. 3 it gives the block level

architecture Spongent-88 core with the controller. In the

CRTL_SQUEEZE state, the absorbed message bits

further go through the PERMUTE state for 45 rounds at

the end of it yields an 8-bit Hash digest, which keeps

updating the 88-bit Hash digest register in the controller

module until the entire 88-bit Hash digest is formed.

The state diagram for the FSM is as seen the Fig. 4,
once the enable and absorb signal goes high the state
moves from CRTL_INIT to CRTL_ABSORB the control
signal absorb remains high as long the message bits
inclusive of padding get absorbed until the value of the

meassage_block reaches 33 (8-bits per block 33 equates
to 264-bit, inclusive of the padding bits) as seen in the
state diagram the control remains in the PERMUTE state
depending on the value of the round counter. The control
signal absorb is made ‘0’ and the squeeze signal is
asserted, now the control of the finite state machine goes
from CRTL_ABSORB to CRTL_SQUEEZE the control
remains absorbed until the value of the Hash_length

reaches 11 (8-bit Hash output from PREMUTE state 11
equates to 88-bits Hash output) the control remains in
PERMUTE state depending on the value of the round
counter until all the 88-bit Hash digest is produced and
updated in the CRTL_SQUEEZE state. Once the 88-bit
Hash digest is obtained state moves from
CRTL_SQUEEZE to CRTL_DONE and then again to the
CRTL_INIT state.

Fig. 3. Proposed architecture for Spongent-88 with Controller.

Fig. 4. Finite State machine for proposed Spongent-88 design with Controller.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

250

V. RESULTS AND DISCUSSIONS

The proposed architecture for the SPONGENT-88

sponge-based lightweight algorithm is realized on FPGA

and ASIC platforms for a comparison of reported works

on both domains.

Section A discusses the implementation results

obtained on the FPGA platform for LUT-4 and LUT-6

technology target boards. The proposed architecture was

also realized on the ASIC platform with TSMC180nm

technology is discussed in Section B.

A. FPGA Implementation

The proposed architecture for Spongent-88 was

implemented using a minimal number of internal state

registers for better throughput efficiency with a trade-off

on memory. The design was constructed using modules

of Permute (πb), Sbox, and Player. An FSM was written

with control signals for the transition of the different

phases of the algorithm from initialization, absorption,

and squeezing. The description of the target platform and

metrics used for measuring the efficiency and

implementation results are as follows.

The proposed architecture was simulated and

synthesized for Xilinx FPGA (LUT-4 and LUT-6

Technology) using ISE Design Suite 14.2 and results

were captured after the place and route phase. Spartan

3(xc3s50-5cp132) board and Virtex4 (xc4vfx12-12sf363)

was chosen for the implementation under LUT-4

technology. The design was implemented for a frequency

constrained to 100kHz. For LUT-6 technology Spartan6

(xc6slx16-3csg324) and Artix A7-100T was chosen. A

board-specific constraint file was generated for the

targeted FPGA for each of the boards. The

implementation of the proposed architecture on the Artix-

A7-100T board was realized using Vivado design suite

2018.1. The implementation architecture of the proposed

design focuses on metrics: area, throughput, and power.

The results for the above metrics are tabulated in Table I

to Table IV in terms of area: flip-flops, lookup table, and

slice, performance: throughput (unconstrainted),

throughput (constrained at 100 kHz), maximum

frequency Fmax, and power: static and dynamic. The other

two derived metrics for area and performance are

throughput/slice (unconstrainted), throughput/slicea

(constrained at 100 kHz), and energy consumption: total

ENEa and ENEa/bit. Throughput is calculated as Thru =

B_sizeFmax/LAT and energy consumed is calculated as

ENE = Total_powerLAT/(constrained frequency), where

Fmax is the maximum frequency reported, LAT is the

latency cycles required to produce the output digest for an

input size of B_size which is 256-bit and represents the

input block size. The power and energy consumption of

the proposed architecture for the LUT-4 and LUT-6

technology are tabulated in Table II and Table IV. Power

analysis is performed at 100kHz clock (reasonable for

applications targeted by lightweight Hash) using the

Xpower analyzer tool on ISE 14.2 design suite for the

proposed architecture.

TABLE I: RESOURCE UTILIZATION AND PERFORMANCE OF SPONGENT-88 ALGORITHM ON LUT- 4 FPGA BOARDS

Work Design Platform
Resource Utilization LAT

(Cycles)

Max. Freq.

(MHz)

Thru

(Mbps)

Thru/Slice

(Mbps/Slice)

Thrua

(Kbps)

Thru/Slicea

(Kbps/Slice) FF LUT Slice

Lara-Nino et al.

[23]
SPC-88

SP3

104 143 74 1980 227 29.32 0.39 12.93 0.17

This Work SPC - 88 94 143 74 1980 291 35.55 0.48 12.93 0.12

This Work SPCFSM - 88 216 301 210 1980+ 102 13.18 0.10 12.93 0.05

This Work SPC - 88
VT4

94 143 74 1980 700.2 90.53 1.22 12.93 0.17

This Work SPCFSM - 88 216 301 210 1980+ 342.7 44.30 0.21 12.93 0.05

TABLE II: POWER AND ENERGY CONSUMPTION OF SPONGENT-88 ALGORITHM ON LUT- 4 TECHNOLOGY TARGET BOARDS

Work Design Platform
Powera (mW) LAT

(Cycles)

ENEa

(uJ)

ENEa/bit

(uJ/bit) Static Dynamic Total

Lara-Nino et.al [23] SPC- 88

SP3

27.25 0.81 28.06 1980 555.59 2.17

This Work SPC- 88 27.25 0.68 27.93 1980 571.03 2.23

This Work SPCFSM - 88 27.25 1.92 29.17 1980+ 577.56 2.25

This Work SPC- 88
VT4

164.97 10.29 175.26 1980 3470.14 13.55

This Work SPCFSM - 88 164.97 17.89 182.86 1980+ 3620.62 14.14

SPC- 88: SPONGENT-88 Core only; SPCFSM-88: SPONGENT-88 Core with FSM

SP3 - Spartan 3 xc3s50-5cp132; VT4 - Virtex 4 xc4vfx12-12sf363; a Frequency constrained at 100kHz

TABLE III: RESOURCE UTILIZATION AND PERFORMANCE OF SPONGENT-88 ALGORITHM ON LUT- 6 FPGA BOARDS

Work Design Platform

Resource Utilization
LAT

(Cycles)

Max.

Freq.

(MHz)

Thru

(Mbps)

Thru/Slice

(Mbps/Slice)

Thrua

(Kbps)
Thru/Slicea
(Kbps/Slice) FF LUT Slice

Lara-Nino et al.

[23]
SPC- 88

104 71 20 1980 302 39.04 1.90 12.93 0.64

Jngk et al. [24] SPC- 88 - - 26 1980 309 39.95 1.53 12.93 0.49

This Work SPC-88 94 71 20 1980 358 46.28 2.30 12.93 0.64

This Work SPCFSM-88 211 203 98 1980 156.78 20.29 0.20 12.93 0.13

This Work SPC- 88
AT7

94 69 20 1980 404.53 52.23 2.37 12.93 0.58

This Work SPCFSM-88 211 147 57 1980+ 208.07 26.90 0.47 12.93 0.21

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

251

TABLE IV: POWER AND ENERGY CONSUMPTION OF SPONGENT-88 ALGORITHM ON LUT-6 TECHNOLOGY TARGET BOARDS

Work Design Platform
Powera (mW) LAT

(Cycles)
ENEa
(uJ)

ENEa/bit
(uJ/bit) Static Dynamic Total

Lara-Nino et al.[23] SPC- 88

SP6

19.91 1.28 21.19 1980 419.56 1.64

This Work SPC- 88 19.91 0.46 20.36 1980 403.12 1.57

This Work SPCFSM - 88 20.01 1.05 22.02 1980+ 440.40 1.72

This Work SPC- 88
AT7

14.20 0.23 14.43 1980 285.71 1.11

This Work SPCFSM - 88 15.30 0.89 16.19 1980+ 320.56 1.25

*SPC- 88: SPONGENT- 88 Core only; *SPCFSM - 88: SPONGENT-88 Core with FSM

*SP6 - Spartan 6 xc6slx16-3csg324; *AT7 - Artix A7-100T; a Frequency constrained at 100Khz

The static/quiescent, dynamic, and total power utilized
by the proposed architecture is calculated using a set of
design files with Xpower analyzer tool. Where static
power is the power due to leakage current and dynamic
power is the power consumed by the logic, load
capacitance, and switching frequency of the design under
implementation.

The percentage increase/decrease is calculated using
the formula:

%increase/decrease= [|difference(intial_reported_value
– new_reported_value)| / intial_reported_value] × 100.

The proposed architecture has been realized in two
designs: a) Spongent-88 Core and b) Spongent-88 with
the FSM, for an input block size of 256 bits which
includes the round counter module in the latter. The
metrics for both resource utilization and performance are
obtained for each of the modules and compared with the
reported works in the literature as given in Table I to
Table IV.

As seen in Table I, our proposed design on Spartan-3
board uses only 94 flipflops which is 9.6% lesser than
Lara-Nino et al. [23] which uses 104 flipflops. Although
the look-up-tables utilized are the same as in work [23],
because of fewer flipflops, the throughput has increased.
An improved maximum operating frequency of 291Mhz
is been reported. On FPGA the total area occupied is
measured in terms of the number of slices occupied.
Throughput/slice being the FOM (Figure of Merit), the
proposed design reports increased by 18.75% in
comparison with the work [23]. On Virtex 4 board the
proposed design achieves a maximum operating
frequency of 700.2MHz. The design is also realized with
FSM for an input block size of 256-bit, where the design
reports a maximum operating frequency of 102MHz on
Saprtan-3 board and 342.7MHz on Virtex-4 board.

The power consumption in terms of dynamic and

quiescent power of the proposed design on Saprtan-3 and

Virtex-4 of LUT-4 technology is tabulated in Table II. As

discussed above our design uses lesser flipflops which

has resulted in better consumption of dynamic power and

a decrease in the total power consumed by 4.6% in

comparison with work [23], which is related to the

switching activity of the flipflops.
Table III gives the tabulation of the area and

performance metrics for the proposed design on Spartan -
6 and Aritx-7 board. As the flipflops remain the same on
LUT-4 technology board which is 10.6% lesser than
Lara-Nino et al. [23]. An improved maximum operating
frequency of 358Mhz is been reported. As
Throughput/slice is the FOM(Figure of merit), the
proposed design reports increased by 21% in comparison
with the work [23] and 50.3% with the Jungk et al. [24].

On Artix-7 board the proposed design achieves a
maximum operating frequency of 404.53 MHz. The
design is also realized with FSM for an input block size
of 256-bit, where the design reports a maximum
operating frequency of 158.78 MHz on Saprtan-6 board
and 208.07 MHz on Artix-7 board.

The power consumption of the proposed design on
Saprtan-6 and Artix-7 of LUT-6 technology is tabulated
in Table IV. As our design uses lesser flipflops which has
resulted in better consumption of dynamic, which is
related to the switching activity of the flipflops. And
reports a decrease in total power by 3.91% in comparison
with Lara-Nino et al. [23].

In the work Jungk et al. [24] the architecture uses FIFO
for feeding the 8-bit input and a FIFO for reading the 8-
bit output, along with a STATE register. Hence
increasing the area utilization and number of slices
occupied. When compared with the architecture by Lara-
Nino et al. [23], the output is taken from the STATE
register after being updated and keeps the assert signals
of absorption and squeeze phase outside the architecture.

Whereas even our proposed algorithm uses a single
STATE register which is clocked and updated for the
subsequent permute function rounds of the algorithm
either for absorption or squeeze phase. The output is
taken from the permutation layer at the end of 45 rounds
of the squeeze phase respectively. The proposed
architecture cascades absorption and squeeze phases of
the algorithm in the same architecture by relevant control
signals and hence making the throughput/slice of the
proposed architecture better than the works in [23, 24] by
21% and 50.03%, respectively on LUT-6 technology
board.

B. ASIC Implementation

The proposed architecture was realized on the ASIC
domain to determine the implementation costs on silicon
which proposes a different challenge when compared to
realizing it on FPGA. The analysis is carried out by
implementing the proposed architecture on different
technology nodes and standard cell libraries and studying
the behavior of implementation cost for the sequential
and combinational logic of the proposed architecture for
the SPONGENT-88 lightweight Hash algorithm.

The area occupied by the design on silicon is
determined using the metric gate-equivalence which
accounts for the physical area required to implement it on
the circuit/board and is measured in µm2, one gate-
equivalence is defined as the area occupied by a 2-input
NAND gate on the respective technology node or
standard cell library. The gate-equivalence is a
technology-independent metric to measure the size
occupied by the design.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

252

Fig. 5. Layout of proposed architecture on TSMC180nm node.

Hardware implementations of lightweight crypto-

graphic primitives are classified as ultra-lightweight, low-

cost, and lightweight occupying up to 1000, 2000, and

3000 gate equivalence respectively. The authors in [2]

classify the lightweight cryptographic primitives in two

categories as ultra-lightweight cryptography and

ubiquitous cryptographic, where the latter deals with

primitives fulfilling a unique purpose while satisfying

specific and narrow constraints and the former encompass

more versatile algorithms/primitives both in terms of

implementation trade-offs and functionality.

A lightweight Hash algorithm's footprint depends upon

two factors, first the number of state bits (inclusive of the

key schedule for block cipher based) and the size

occupied by the functional and control logic used to

realize a round function. The proposed architecture has a

serialized approach with a data path size of 88 bits, it is

designed to utilize lesser flip-flops and has a good

tradeoff between the sequential and combinational logic

required to realize the Spongent-88 sponge-based

lightweight Hash algorithm. The proposed design has

reported 1204 GE with 45 cycles required for each block

of data on UMC180nm technology in comparison to 1232

GE which was originally reported work of Spongent-88

with the same data path [14] on a similar technology node.

The layout of the proposed architecture is seen in Fig. 5.

The results obtained on TSMC180nm technology are

seen in Table V which gives the detailed area occupied

for the individual modules Permute, Sbox, and Player.

Table VI gives the gate-equivalence obtained from

TSMC180nm for SPONGENT-128 and SPONGENT-224

of the proposed architecture. Therefore, this work has

reported the 1204 GE occupied for the 88-bit data path on

TSMC180nm technology, whereas the original work [16]

reports 1232 GE on a similar technology node, i.e.

UMC180, the proposed work has a 2.27% decrease in the

area occupied.

The proposed architecture is also realized for

SPONGENT-128 and SPONGENT-224 keeping the

architecture similar with an increase in the number of

instantiations of Sbox, Permutation bits, and internal

State register for each of the variants respectively. The

proposed architecture for SPONGENT-128 and

SPONGENT-224 have security bounds that are

comparable with SHA-1 and SHA-2 [8] NIST

recommended Hash algorithms. The gate-equivalence of

the latter variants of SPONGENT is tabulated in Table VI,

where the footprint is reduced by 3.5% and 6.4% for

SPONGENT-128 and SPONGENT-224 respectively.

To have a familiar comparison of the proposed

SPONGENT-88 architecture under 1000 GE with the

original work, the proposed work has also implemented

the algorithm in a serialized architecture, where a single

S-box module is utilized instead of 22 instances of the S-

box, keeping the rest of the architecture the same. This

work has achieved 819 GE on TSMC180 technology

node.

TABLE V: AREA OF THE PROPOSED WORK ON TSMC180NMNODE

Design Data path (bits) Module Gate-equivalence (GE)

SPONGENT- 88/80/8 88

Permute 16.66

S-box
1- instance 27.00

22- instance 594.00

Permutation layer (Player) 0.00

Glue Logic 593.34

Total
(Sequential -537.67) + (Combinational -

599.01 + Inverter - 68.00) = 1204

TABLE VI: AREA OF THE PROPOSED WORK ON TSMC180NM TECHNOLOGY FOR SPONGENT-128 AND SPONGENT-224 VARIANT

Design Data path (bits) Module Gate-equivalence (GE) Total (GE)

SPONGENT-128/128/8
136

Permute 45.12

1790 S-box 34- instance 918.00

Glue logic 826.88

SPONGENT-128/128/8[14] - - 1855

SPONGENT-224/224/16
240

Permute 121.31

2995 S-box 60-instance 1620

Glue logic 1253.69

SPONGENT- 224/224/16[14] - - 3203

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

253

The power consumption for a frequency constrained at

100kHz for the proposed SPONGENT-88, 128, 224

variant as computed on the ASIC platform on the genus

tool is tabulated in Table VII. As the power computed is

on different technology nodes of the original work [14].

Since power consumption cannot be compared across

different technology nodes. The proposed work consumes

lesser power on higher technology nodes as referred to in

Table VIII. Due to the availability of all the technology

node-dependent files required to generate the cells, power,

and timing reports, the proposed work was carried out on

the TSMC180 node. The work [25] also implements the

Spongent-88 algorithm in its full data path of 88 bits. The

proposed work reports a better reduction in the area by

15% and in power by 46% in comparison with the latter

one as observed in Table VII. The lightweight hash

algorithms discussed in the Related works section have

been classified on gate-equivalence of hardware

implementation as lightweight, low-cost, and ultra-

lightweight cryptographic primitives in Table VIII, Table

IX, and Table X with gate equivalence between less than

1000 GE, 2000-3000 GE, and 1000-2000 GE respectively,

along with the security bounds on pre-image, second pre-

image, and collision attacks for the each of the algorithms.

The proposed algorithms for Spongent variants,

SPONGENT-88 with a data path of 4-bit, SPONGENT-

128 with a data path of 136-bit, and SPONGENT-224

with a data path of 240-bit. Classify under the lightweight,

low-cost, and ultra-lightweight cryptographic primitives.

Under lightweight primitive, our proposed design for

SPONGENT-88 with 4-bit data path achieves increased

throughput by 46% in comparison with work [25].

TABLE VII: POWER CONSUMPTION OF THE SPONGENT FAMILY FOR 88/128/224 VARIANT WITH THE PROPOSED SPONGENT ARCHITECTURE FOR A

FREQUENCY OF 100KHZ

Hash Algorithm
Security

Hash (bit) Datapath Cycles Process (µm) Power (µW)
Pre. 2nd Pre. Col.

Spongent-88/80/8 [14] 80 40 40 88 88 45 0.13 1.57

Spongent-88/80/8 [25] 80 40 40 88 88 45 0.18 1.5

This Work Spongent-88 80 40 40 88 88 45 0.18 1.37

Spongent-128/128/8 [14] 120 64 64 128 136 70 0.13 3.58

Spongent-128/128/8 [25] 120 64 64 128 136 70 0.18 12.85

This Work Spongent-128 120 64 64 128 136 70 0.18 3.01

Spongent-224/224/16 [14] 208 112 112 224 240 120 0.13 5.97

Spongent-224/224/16 [25] 208 112 112 224 240 120 0.18 22.98

This Work Spongent-224 208 112 112 224 240 120 0.18 4.91

TABLE VIII: COMPARISON OF DIFFERENT HASH ALGORITHMS FOR GE< 1000

Algorithm
Parameters Security Bounds

Data path Cycles Process (µm) Area (GE) Thru (kbps)
n b C r Pre 2nd Pre Col

PHOTON [11] 80 100 80 20 64 40 40 4 708 0.18 865 2.82

Spongent [14] 80 88 80 8 80 40 40 4 990 0.13 738 0.81

LHash [13] 80 96 80 16 64 40 40 4 666 0.13 817 1.44

Spongent [14] 80 88 80 8 80 40 40 4 990 0.18 759 *

Spongent-88 [25] 80 88 80 8 80 40 40 4 990 0.18 967 1.5

This Work:
Spongent-88

88 88 80 8 80 40 40 4 990 0.18 819 0.81

n: Hash digest, b: internal state size, C: capacity, r: rate, Pre: preimage, 2nd – Pre: Secondary preimage, Col: collision, * not reported

TABLE IX: COMPARISON OF DIFFERENT HASH ALGORITHMS FOR 1000>GE< 2000

Algorithm
Parameters Security Bounds

Data path Cycles Process (µm) Area (GE) Thru (kbps)
n b C r Pre 2nd Pre Col

PHOTON [11]

128 144 128 16 112 64 64 4 996 0.18 1122 1.16

80 80 20 16 64 40 40 20 132 0.18 1168 12.15

160 160 36 36 124 80 80 4 1132 0.18 1396 2.70

128 128 16 16 112 64 64 24 156 0.18 1708 10.26

224 224 32 32 192 112 112 4 1716 0.18 1735 1.86

Spongent [14]

88 88 80 8 80 40 40 88 45 0.13 1127 17.78

128 128 128 8 120 64 64 4 2380 0.13 1060 0.34

160 160 160 16 144 80 80 4 3960 0.13 1329 0.40

224 224 224 16 208 112 112 4 7200 0.13 1728 0.22

88 88 176 88 88 44 88 4 8910 0.13 1912 0.99

256 256 512 256 256 128 256 4 9520 0.13 1950 0.17

U-Quark [12] 128 136 128 8 120 64 64 1 544 0.18 1379 1.47

D-Quark [12] 160 160 128 8 144 80 80 1 704 0.18 1702 2.27

LHash [13]

128 128 120 8 120 60 60 4 882 0.18 1028 0.40

128 128 120 8 120 60 60 4 72 0.18 1200 4.94

128 128 112 16 96 56 56 4 882 0.18 1028 1.21

128 128 112 16 96 56 56 4 72 0.18 1200 14.81

Keccak-f [8] 80 100 80 20 60 40 40 4 800 0.18 1250 1.50

DM-Present [19]
80 - 64 - 64 32 64 4 547 0.18 1600 14.63

128 - 128 - 64 32 64 4 559 0.18 1886 22.90

Spongent-128 [14] 128 128 128 8 120 64 64 4 70 0.18 1855 *

This Work:

Spongent-128
128 128 128 8 120 64 64 136 70 0.18 1790 11.42

n: Hash digest, b: internal state size, C: capacity, r: rate, Pre: preimage, 2nd – Pre: Secondary preimage, Col: collision, * not reported

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

254

TABLE X: COMPARISON OF DIFFERENT HASH ALGORITHMS FOR 2000 >GE< 3000

Algorithm
Parameters Security Bounds

Data path Cycles Process (µm) Area (GE) Thru (kbps)
n b C r Pre 2nd Pre Col

Spongent [14]

128 128 256 128 128 64 128 4 18720 0.13 2641 0.68

160 160 160 16 144 80 80 176 90 0.13 2190 17.78

224 224 224 16 208 112 112 240 120 0.13 2903 13.33

224 224 224 112 208 112 112 4 14280 0.13 2371 0.78

Photon [11]

160 160 36 36 124 80 80 28 180 0.18 2117 20.00

224 224 32 32 192 112 112 32 204 0.18 2786 15.69

256 256 32 32 224 128 128 8 996 0.18 2177 3.21

u-Quark [12] 128 136 128 8 120 64 64 8 68 0.18 2392 11.76

d-Quark [12] 160 160 128 8 114 80 80 8 88 0.18 2819 18.18

s-Quark [12] 224 224 128 8 192 112 112 1 1024 0.18 2296 3.13

DM- PRESENT [19]
80 - 64 - 64 32 64 64 33 0.18 2213 242.42

128 - 64 - 64 32 64 128 33 0.18 2530 387.88

H- PRESENT [19] 128 - 64 - 128 64 64 8 559 0.18 2330 11.45

Keccak-f [8] 128 200 128 72 64 64 64 8 900 0.13 2520 8.00

GLUON [10]
64 - - - 128 - 64 8 66 * 2071 12.12

80 - - - 160 - 80 16 50 * 2799 32.00

Spongent- 224 [14] 224 224 224 16 208 112 112 240 120 0.18 3203 *

This Work:

Spongent-224
224 224 224 16 208 112 112 240 120 0.18 2295 13.33

n: Hash digest, b: internal state size, C: capacity, r: rate, Pre: preimage, 2nd – Pre: Secondary preimage, Col: collision, * not reported

VI. CONCLUSION

This work has evaluated the hardware implementation

of the proposed architectures for the SPONGENT-88,

SPONGENT-128, and SPONGENT-224 variant of the

SPONGENT lightweight Hash algorithm for the

proposed architecture. The SPONGENT-88 is been

compared with state-of-art works done on the FPGA

platform. In the ASIC domain, the proposed work is been

carried out on TSMC180nm technology and has been

compared to the original work reported [14]. To increase

the throughput of the architecture on FPGA a fair balance

of Look-up-tables and Flipflops is achieved in the

proposed architecture. Since throughput/slice is the FOM

(Figure of Merit) for measuring the performance of the

proposed design and the work has achieved 50.03% and

21% more throughput/slice in comparison with the works

Lara-Nino et al. [23] and Jungk et al. [24] on Spartan-6

technology board. Original work [14] reports 1232 GE

and the proposed architecture on the similar technology

occupies 1204 GE with a reduction of 2.27% in the area.

Recent works also [26] show interest in SPONGENT

algorithm as an authentication primitive in blockchain

technology. This work can be further used to design and

develop a lightweight authenticated encryption or

authenticated permutation encryption engine/module at

end nodes with both data privacy/confidentiality with

authentication at end nodes [27].

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Nalini C. Iyer was instrumental in the study of

lightweight authentication primitives, identifying the

algorithm and articulating the findings and analysis.

Heera G. Wali carried out the optimized implementation

and analysis of the proposed work.

REFERENCES

[1] S. Kerckhof, F. Durvaux, François and C. Hocquet et al. “Towards

green cryptography: A comparison of lightweight ciphers from the

energy viewpoint,” Lecture Notes in Computer Science, vol. 7428,

pp. 390-407, 2017.

[2] M. Rana, Q. Mamun, and R. Islam, “Lightweight cryptography in

IoT networks: A survey,” Future Generation Computer Systems,

vol. 129, pp. 77-89, 2022.

[3] K. Tsantikidou and N. Sklavos, “Hardware limitations of

lightweight cryptographic designs for IoT in healthcare,”

Cryptography, vol. 6, no. 3, #45, 2022.

[4] S. Abed, R. Jaffal, B. J. Mohd, et al., “An analysis and evaluation

of lightweight hash functions for blockchain-based IoT devices,”

Cluster Comput, vol. 24, pp. 3065-3084, Jun. 2021.

[5] I. H. Abdulqadder, S. Zhou, D. Zou, I. T. Aziz, and S. M. A.

Akber, “Bloc-Sec: Blockchain-based lightweight security

architecture for 5G/B5G enabled SDN/NFV cloud of IoT,” in Proc.

of 2020 IEEE 20th International Conference on Communication

Technology, 2022, pp. 499-507.

[6] N. A. Gunathilake, A. Al-Dubai, and W. J. Buchana, “Recent

advances and trends in lightweight cryptography for IoT security,”

in Proc. of 2020 16th Int. Conf. on Network and Service

Management, 2020, doi: 10.23919/CNSM50824.2020.9269083

[7] S. Aruna, G. Usha, P. Madhavan, and M. V. R. Kumar,

“Lightweight cryptography algorithms for IoT resource-starving

devices,” in Role of Edge Analytics in Sustainable Smart City

Development, G. R. Kanagachidambaresan Ed. 2020, doi:

https://doi.org/10.1002/9781119681328.ch8.

[8] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, “Keccak,”

Lecture Notes in Computer Science, vol. 7881, 2013, doi:

https://doi.org/10.1007/978-3-642-38348-9_19

[9] S. Badel, N. Dagekin, J. Nakahara Jr., et al., “ARMADILLO: A

multi-purpose cryptographic primitive dedicated to hardware,”

Lecture Notes in Computer Science, vol. 6225, 2010, doi:

https://doi.org/10.1007/978-3-642-15031-9_27

[10] T. P. Berger, J. D'Hayer, K. Marquet, et al., “The GLUON family:

a lightweight Hash function family based on FCSRs,” Lecture

Notes in Computer Science, vol. 7374, pp. 306–323, 2012, doi:

https://doi.org/10.1007/978-3-642-31410-0_1

[11] J. Guo, T Peyrin, and A. Poschmann, “The PHOTON family of

lightweight hash functions,” Lecture Notes in Computer Science,

vol. 6841, pp. 222–239, 2011.

[12] J. P. Aumasson, L. Henzen, W. Meier, M. Naya-Plasencia, “Quark:

A lightweight hash,” Lecture Notes in Computer Science, vol.

6225, pp. 1–15, 2010.

[13] W. Wu, S. Wu, L. Zhang, et al., “LHash: A lightweight Hash

function,” Lecture Notes in Computer Science, vol. 8567, pp. 291-

308, 2014.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

255

[14] A. Bogdanov, M. Knezevic, G. Leander, et al., “SPONGENT: A

lightweight hash function,” Lecture Notes in Computer Science,

vol. 6917, pp. 312–325, 2011.

[15] D. N. Gupta and R. Kumar, “Sponge based lightweight

cryptographic Hash functions for IoT applications,” in Proc. of

International Conference on Intelligent Technologies, 2021, doi:

10.1109/CONIT51480.2021.9498572

[16] B. Tim, Y. L. Chen, C. Dobraunig, B. Mennink. (2021). Elephant

v2 Specification. Submission to NIST LWC Project. [Online].

Available: https://www.esat.kuleuven.be/cosic/elephant/

[17] L. Pyrgas and P. Kitsos, “An 8-bit compact architecture of

lesamnta-LW Hash function for constrained devices,” in Proc. of

26th IEEE International Conference on Electronics, Circuits and

Systems, 2019, pp. 743-746.

[18] NIST. (2019). Lightweight Cryptography: Project Overview.

[Online]. Available: https://csrc.nist.gov/projects/lightweight-

cryptography

[19] A. Bogdanov, G. Leander, C. Paar, et al., “Hash functions and

RFID tags: Mind the gap,” Lecture Notes in Computer Science,

vol. 5154, pp. 283-299, 2008.

[20] W. Zhang, Z. Bao, V. Rijmen, and M. Liu, “A new classification

of 4-bit optimal S-boxes and its application to PRESENT,

RECTANGLE and SPONGENT,” Lecture Notes in Computer

Science, vol. 9054, pp. 494-515, 2015.

[21] B. Ovilla-Martínez, C. Mancillas-López, A. F. Martínez-Herrera,

and J. A. Bernal-Gutiérrez, “FPGA implementation of some

second round NIST lightweight cryptography candidates,”

Electronics vol. 9, no. 11, #1940, 2020.

[22] M. Tehranipoor, N. Pundir, N. Vashistha, F. Farahmandi,

“Lightweight cryptography,” in Hardware Security Primitives.

Springer, Cham, 2023, doi: https://doi.org/10.1007/978-3-031-

19185-5_12.

[23] C. A. Lara-Nino, M. Morales-Sandoval, and A. Diaz-Perez,

“Small lightweight Hash functions in FPGA,” in Proc. of IEEE

9th Latin American Symposium on Circuits Systems, 2018. doi:

10.1109/LASCAS.2018.8399948.

[24] B. Jungk, L. R. Lima, and M. Hiller, “A systematic study of

lightweight Hash functions on FPGAs,” in Proc. of 2014

International Conference on ReConFigurable Computing and

FPGAsc, 2014, doi: 10.1109/ReConFig.2014.7032493.

[25] B. Rashidi, “Efficient full data-path width and serialized hardware

structures of SPONGENT lightweight hash function,”

Microelectronics Journal, vol. 115, 2021, doi:

https://doi.org/10.1016/j.mejo.2021.105167

[26] M. Apriani and R. F. Sari, “Performance comparison of spongent

and photon hashing algorithms in ethereum-based blockchain

system,” in Proc. 7th International Conference on Electrical,

Electronics and Information Engineering, 2021, pp. 564-569.

[27] P. Zhang, “Permutation-based lightweight authenticated cipher

with beyond conventional security,” Security and Communication

Networks, vol. 2021, 2021, doi:

http://doi.org/10.1155/2021/1468007.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Heera G. Wali is a research scholar and

Assistant professor at KLE Technological

University, Hubli, Karnataka, India (2016).

She has obtained Bachelor's Degree in

Electronics and Communication Engineering

from B.V. Bhoomaraddi College of

Engineering and Technology, VTU Belgaum

(2007), and a Master's Degree in VLSI design

and testing (2013). Her researches are in the

field of image encryption, IoT security,

cryptography, lightweight cryptography and its use cases.

Nalini C. Iyer is currently heading School of

Electronics and Communication Engineering

at KLE Technological University, Hubli,

Karnataka, India. She obtained Ph.D. degree

in Electronics and Communication

(Information Security Algorithm Optimization

and Architectures, VTU Belgaum) in 2014.

Her researches are in the fields of.

Cryptography, Hardware Security, Embedded

systems for autonomous functions

(Autonomous Vehicle), Vehicular Communication, and VLSI Design.

She is affiliated with IEEE and has served as an invited reviewer.

Besides, she is also involved in student associations, curriculum design,

and outcome-based education pedagogy development activities at the

university.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 4, July 2023

256

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

